Depth judgment tasks and environments in near-field augmented reality

Gurjot Singh, J. Swan, J. A. Jones, S. Ellis
{"title":"Depth judgment tasks and environments in near-field augmented reality","authors":"Gurjot Singh, J. Swan, J. A. Jones, S. Ellis","doi":"10.1109/VR.2011.5759488","DOIUrl":null,"url":null,"abstract":"In this poster abstract we describe an experiment that measured depth judgments in optical see-through augmented reality at near-field distances of 34 to 50 centimeters. The experiment compared two depth judgment tasks: perceptual matching, a closed-loop task, and blind reaching, a visually open-loop task. The experiment tested each of these tasks in both a real-world environment and an augmented reality environment, and used a between-subjects design that included 40 participants. The experiment found that matching judgments were very accurate in the real world, with errors on the order of millimeters and very little variance. In contrast, matching judgments in augmented reality showed a linear trend of increasing overestimation with increasing distance, with a mean overestimation of ∼ 1 cm. With reaching judgments participants underestimated ∼ 4.5 cm in both augmented reality and the real world. We also discovered and solved a calibration problem that arises at near-field distances.","PeriodicalId":346701,"journal":{"name":"2011 IEEE Virtual Reality Conference","volume":"44 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Virtual Reality Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2011.5759488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this poster abstract we describe an experiment that measured depth judgments in optical see-through augmented reality at near-field distances of 34 to 50 centimeters. The experiment compared two depth judgment tasks: perceptual matching, a closed-loop task, and blind reaching, a visually open-loop task. The experiment tested each of these tasks in both a real-world environment and an augmented reality environment, and used a between-subjects design that included 40 participants. The experiment found that matching judgments were very accurate in the real world, with errors on the order of millimeters and very little variance. In contrast, matching judgments in augmented reality showed a linear trend of increasing overestimation with increasing distance, with a mean overestimation of ∼ 1 cm. With reaching judgments participants underestimated ∼ 4.5 cm in both augmented reality and the real world. We also discovered and solved a calibration problem that arises at near-field distances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近场增强现实中的深度判断任务和环境
在这张海报摘要中,我们描述了一个实验,在34到50厘米的近场距离测量光学透明增强现实的深度判断。实验比较了两种深度判断任务:知觉匹配(闭环任务)和盲取(视觉开环任务)。实验在现实环境和增强现实环境中测试了这些任务,并采用了包括40名参与者的中间受试者设计。实验发现,匹配判断在现实世界中非常准确,误差在毫米量级,差异很小。相比之下,增强现实中的匹配判断随着距离的增加呈现出高估增加的线性趋势,平均高估约为1 cm。在增强现实和现实世界中,参与者在做出判断时都低估了4.5厘米。我们还发现并解决了在近场距离出现的校准问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depth judgment tasks and environments in near-field augmented reality Continual surface-based multi-projector blending for moving objects Mixed reality for supporting office devices troubleshooting “Tap, squeeze and stir” the virtual world: Touching the different states of matter through 6DoF haptic interaction Olfactory feedback system to improve the concentration level based on biological information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1