Approaches Towards A Recommendation Engine For Life Insurance Products

Aabhas Vij, N. Preethi
{"title":"Approaches Towards A Recommendation Engine For Life Insurance Products","authors":"Aabhas Vij, N. Preethi","doi":"10.1109/ICMNWC52512.2021.9688436","DOIUrl":null,"url":null,"abstract":"Recommender engines are powerful tools in today’s world to overcome the problem of over choice. As the world is moving towards information overload, the life insurance industry is no more immune than any other domain. Three broad categories of life insurance plans are namely – Endowment, Term and ULIP. This paper discusses a variety of ML models that aim to classify the right fit product category for a new customer (extendable to existing customers) on a real-time life insurance company dataset. The dataset used for the modelling were of 2 kinds. The first kind contained features of customer demographics – age, location, education and occupation. The second dataset included these customer demographics as well as the bureau information of the respective customers which included multiple features describing their credit history. By the means of clustering, collaborative filtering approaches were tried on. Also, the problem was tackled using predictive modelling techniques such as Random Forest, Decision Trees and XGBoost.","PeriodicalId":186283,"journal":{"name":"2021 IEEE International Conference on Mobile Networks and Wireless Communications (ICMNWC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mobile Networks and Wireless Communications (ICMNWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMNWC52512.2021.9688436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recommender engines are powerful tools in today’s world to overcome the problem of over choice. As the world is moving towards information overload, the life insurance industry is no more immune than any other domain. Three broad categories of life insurance plans are namely – Endowment, Term and ULIP. This paper discusses a variety of ML models that aim to classify the right fit product category for a new customer (extendable to existing customers) on a real-time life insurance company dataset. The dataset used for the modelling were of 2 kinds. The first kind contained features of customer demographics – age, location, education and occupation. The second dataset included these customer demographics as well as the bureau information of the respective customers which included multiple features describing their credit history. By the means of clustering, collaborative filtering approaches were tried on. Also, the problem was tackled using predictive modelling techniques such as Random Forest, Decision Trees and XGBoost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人寿保险产品推荐引擎的研究
推荐引擎是当今世界克服过度选择问题的强大工具。随着世界走向信息超载,寿险行业也没有比其他任何领域更能幸免。人寿保险计划有三大类,即:养老保险、定期保险和终身保险。本文讨论了各种ML模型,这些模型旨在在实时人寿保险公司数据集上为新客户(可扩展到现有客户)分类合适的产品类别。用于建模的数据集分为两类。第一类包含客户人口统计特征——年龄、地理位置、教育程度和职业。第二个数据集包括这些客户人口统计数据以及各自客户的局信息,其中包括描述其信用历史的多个特征。通过聚类的方法,尝试了协同过滤方法。此外,我们还使用了随机森林、决策树和XGBoost等预测建模技术来解决这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Off-Board Li-Ion Battery Fast Charger with Two-Stage Bidirectional Converter for Electric Vehicles Approaches Towards A Recommendation Engine For Life Insurance Products Design of Quad-Band Antenna of 3.8 GHz range for Wi-Max Applications AGROIoT - IoT Assisted Farming Fusion of Brain MR Images for Tumor Analysis using Bi-Level Stationary Wavelet Transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1