Deep Learning for Automatic IC Image Analysis

Xuenong Hong, Deruo Cheng, Yiqiong Shi, Tong Lin, B. Gwee
{"title":"Deep Learning for Automatic IC Image Analysis","authors":"Xuenong Hong, Deruo Cheng, Yiqiong Shi, Tong Lin, B. Gwee","doi":"10.1109/ICDSP.2018.8631555","DOIUrl":null,"url":null,"abstract":"We propose a systematic training and validation approach for obtaining a deep learning model for automatic IC image analysis, i.e. IC image semantic segmentation. Our approach divides IC images into different regions of interest and provides for noise rejection training. We discuss steps for obtaining such a model. By experiment and by comparison with competing image processing techniques, deep learning models obtained by our approach demonstrate good generalization capability, high prediction accuracy and low circuit annotation error.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"33 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

We propose a systematic training and validation approach for obtaining a deep learning model for automatic IC image analysis, i.e. IC image semantic segmentation. Our approach divides IC images into different regions of interest and provides for noise rejection training. We discuss steps for obtaining such a model. By experiment and by comparison with competing image processing techniques, deep learning models obtained by our approach demonstrate good generalization capability, high prediction accuracy and low circuit annotation error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于自动IC图像分析的深度学习
我们提出了一种系统的训练和验证方法来获得用于自动集成电路图像分析的深度学习模型,即集成电路图像语义分割。我们的方法将IC图像划分为不同的感兴趣区域,并提供噪声抑制训练。我们讨论了获得这种模型的步骤。通过实验和与竞争图像处理技术的比较,该方法获得的深度学习模型具有良好的泛化能力、较高的预测精度和较低的电路标注误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High-Throughput QC-LDPC Decoder for Near-Earth Application Face Recognition Based on Stacked Convolutional Autoencoder and Sparse Representation Internet of Remote Things: A Communication Scheme for Air-to-Ground Information Dissemination Deep Learning for Automatic IC Image Analysis A 4-D Sparse FIR Hyperfan Filter for Volumetric Refocusing of Light Fields by Hard Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1