Behavior of Double and Single Square Steel Tube Alloy Composite Subjected to Bending

Ahmed Saleh Alraeeini, E. Nikbakht, L. Gunawan
{"title":"Behavior of Double and Single Square Steel Tube Alloy Composite Subjected to Bending","authors":"Ahmed Saleh Alraeeini, E. Nikbakht, L. Gunawan","doi":"10.1109/ICEVT55516.2022.9924732","DOIUrl":null,"url":null,"abstract":"This study investigates the concrete filled double skin Tubular (CFDST) beam compared to the concrete filled steel tubular (CFST) beam under pure bending. Normal concrete is used with a compressive strength of 35MPa and an aggregate size ranging from 4.75mm-14mm. Thickness of all low alloy steel tubes are 2.3mm with outer and inner width being 100mm and 50mm, respectively. The results show that the ultimate strength of the CFDST beam was higher by8.2% compared to the corresponding CFST beam. Furthermore, the energy absorption, ductility index, and initial flexural stiffness of CFDST beam were 38.6%, 38.3%, and 19.02%, respectively, higher than the corresponding CFST beams. Moreover, the results indicate that the aggregate size ranging from 4.75-14 mm used in this study is suitable for both CFST and CFSDT elements.","PeriodicalId":115017,"journal":{"name":"2022 7th International Conference on Electric Vehicular Technology (ICEVT)","volume":"282 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Electric Vehicular Technology (ICEVT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEVT55516.2022.9924732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the concrete filled double skin Tubular (CFDST) beam compared to the concrete filled steel tubular (CFST) beam under pure bending. Normal concrete is used with a compressive strength of 35MPa and an aggregate size ranging from 4.75mm-14mm. Thickness of all low alloy steel tubes are 2.3mm with outer and inner width being 100mm and 50mm, respectively. The results show that the ultimate strength of the CFDST beam was higher by8.2% compared to the corresponding CFST beam. Furthermore, the energy absorption, ductility index, and initial flexural stiffness of CFDST beam were 38.6%, 38.3%, and 19.02%, respectively, higher than the corresponding CFST beams. Moreover, the results indicate that the aggregate size ranging from 4.75-14 mm used in this study is suitable for both CFST and CFSDT elements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双、单方钢管合金复合材料的弯曲性能
本文研究了双层钢管混凝土梁在纯弯曲条件下与钢管混凝土梁的对比。采用普通混凝土,抗压强度35MPa,骨料尺寸4.75mm-14mm。所有低合金钢管厚度均为2.3mm,外宽100mm,内宽50mm。结果表明,CFDST梁的极限强度比CFST梁提高了8.2%。CFDST梁的能量吸收、延性指数和初始抗弯刚度分别比CFST梁高38.6%、38.3%和19.02%。此外,研究结果表明,本研究中使用的骨料粒径范围为4.75 ~ 14 mm,适用于CFST和CFSDT单元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Battery Thermal Management System Based on Animal Fat as Phase Change Material and Heat Pipe for Electric Vehicles Application Behavior of Double and Single Square Steel Tube Alloy Composite Subjected to Bending Electrolyte-dependent Specific Capacitance and Charge Transfer Properties of Exfoliated Graphene as an Electrode of Supercapacitor Analysis of Li-Ion Battery Pack Performance Air Cooling Battery Compartment on a Swappable Battery of Electric Motorcycle 3D Printed Polymer Core and Carbon Fiber Skin Sandwich Composite: An Alternative Material and Process for Electric Vehicles Customization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1