Battery aging estimation with deep learning

A. Veeraraghavan, V. Adithya, Ajinkya Bhave, S. Akella
{"title":"Battery aging estimation with deep learning","authors":"A. Veeraraghavan, V. Adithya, Ajinkya Bhave, S. Akella","doi":"10.1109/ITEC-INDIA.2017.8333827","DOIUrl":null,"url":null,"abstract":"Battery Management System (BMS) is a critical component in EV (Electric Vehicle) powertrains. The precise knowledge of the battery's state of health and capacity impacts the estimation and control strategies of many other EV components. Current battery aging models are physics-based and complex, with limited capability to run in real-time. In this paper, we apply deep learning techniques to design an estimator of battery capacity using a combination of virtual and real battery data, and which can be run in real-time on the EV ECU. The estimator is implemented in an Amesim model of the EV powertrain and experimental results of its performance with standard drive cycles are demonstrated.","PeriodicalId":312418,"journal":{"name":"2017 IEEE Transportation Electrification Conference (ITEC-India)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Transportation Electrification Conference (ITEC-India)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC-INDIA.2017.8333827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Battery Management System (BMS) is a critical component in EV (Electric Vehicle) powertrains. The precise knowledge of the battery's state of health and capacity impacts the estimation and control strategies of many other EV components. Current battery aging models are physics-based and complex, with limited capability to run in real-time. In this paper, we apply deep learning techniques to design an estimator of battery capacity using a combination of virtual and real battery data, and which can be run in real-time on the EV ECU. The estimator is implemented in an Amesim model of the EV powertrain and experimental results of its performance with standard drive cycles are demonstrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的电池老化估计
电池管理系统(BMS)是电动汽车动力系统的关键部件。对电池健康状态和容量的精确了解影响着许多其他电动汽车部件的估计和控制策略。目前的电池老化模型是基于物理的、复杂的,实时运行的能力有限。在本文中,我们应用深度学习技术设计了一个结合虚拟和真实电池数据的电池容量估计器,该估计器可以在EV ECU上实时运行。在电动汽车动力系统的Amesim模型中实现了该估计器,并对其在标准驱动循环下的性能进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical analysis of thermal and mechanical field in the high temperature permanent magnet synchronous Machine Battery aging estimation with deep learning Impact of zero-voltage switching on efficiency and power transfer capability of a series-series compensated IPT system An electric circuit based EV battery model for runtime prediction and state of charge tracking Optimization of single speed EV drivetrain for commercial electric vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1