Text Classification of Climate Change Tweets using Artificial Neural Networks, FastText Word Embeddings, and Latent Dirichlet Allocation

John Daves S. Baguio, Billy A. Lu, Christine F. Peña
{"title":"Text Classification of Climate Change Tweets using Artificial Neural Networks, FastText Word Embeddings, and Latent Dirichlet Allocation","authors":"John Daves S. Baguio, Billy A. Lu, Christine F. Peña","doi":"10.1109/APSIT58554.2023.10201782","DOIUrl":null,"url":null,"abstract":"The climate change discourse on social media happens rapidly with microblogging sites such as Twitter. On these types of sites, there is a divide of stances. Some people believe that climate change is man-made, and some people deny its existence. This study aimed to classify climate change tweets in the given labeled dataset with the created text classification model that used Artificial Neural Networks, FastText Word Embeddings, and Latent Dirichlet Allocation. Additionally, domain-specific preprocessing methods for climate change tweets and adding features by appending the majority topic of a given tweet between each word are applied. This study has shown that the created text classification model improved the F1 score of the two undersampled classes by 1 % and 6 % respectively while still maintaining a good F1 score for the majority class. The text classification model overall increased both macro and weighted averages by 3 % and 1 % respectively.","PeriodicalId":170044,"journal":{"name":"2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIT58554.2023.10201782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The climate change discourse on social media happens rapidly with microblogging sites such as Twitter. On these types of sites, there is a divide of stances. Some people believe that climate change is man-made, and some people deny its existence. This study aimed to classify climate change tweets in the given labeled dataset with the created text classification model that used Artificial Neural Networks, FastText Word Embeddings, and Latent Dirichlet Allocation. Additionally, domain-specific preprocessing methods for climate change tweets and adding features by appending the majority topic of a given tweet between each word are applied. This study has shown that the created text classification model improved the F1 score of the two undersampled classes by 1 % and 6 % respectively while still maintaining a good F1 score for the majority class. The text classification model overall increased both macro and weighted averages by 3 % and 1 % respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络、快速文本词嵌入和潜在狄利克雷分配的气候变化推文文本分类
社交媒体上关于气候变化的讨论在Twitter等微博网站上迅速展开。在这些类型的网站上,有不同的立场。有些人认为气候变化是人为造成的,而有些人则否认它的存在。本研究旨在使用人工神经网络、快速文本词嵌入和潜在狄利克雷分配所创建的文本分类模型,对给定标记数据集中的气候变化推文进行分类。此外,还应用了针对气候变化tweet的特定领域预处理方法,并通过在每个单词之间附加给定tweet的主要主题来添加特征。本研究表明,所创建的文本分类模型将两个欠采样类的F1分数分别提高了1%和6%,同时对于大多数类仍然保持良好的F1分数。文本分类模型总体上使宏观平均值和加权平均值分别提高了3%和1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DGA Based Ensemble Learning Approach for Power Transformer Fault Diagnosis Review of Routing Protocols for Sink with mobility nature in Wireless Sensor Networks Comparative Analysis of Dual-edge Triggered and Sense Amplifier Based Flip-flops in 32 nm CMOS Regime Text Classification of Climate Change Tweets using Artificial Neural Networks, FastText Word Embeddings, and Latent Dirichlet Allocation An Integration of Elephant Herding Optimization and Fruit Fly Optimized Algorithm for Energy Conserving in MANET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1