Estimation of bending behavior of an ionic polymer metal composite actuator using a nonlinear black-box model

D. Truong, K. Ahn, D. N. C. Nam, J. Yoon
{"title":"Estimation of bending behavior of an ionic polymer metal composite actuator using a nonlinear black-box model","authors":"D. Truong, K. Ahn, D. N. C. Nam, J. Yoon","doi":"10.1109/ICCAS.2010.5669876","DOIUrl":null,"url":null,"abstract":"An ion polymer metal composite (IPMC) is an electro-active polymer that bends in response to a small applied electrical field as a result of mobility of cations in the polymer network and vice versa. This paper presents a novel accurate nonlinear black-box model (NBBM) for estimating the bending behavior of IPMC. The NBBM is based on a recurrent multi-layer perceptron neural network (RMLPNN) and a self-adjustable learning mechanism (SALM). The model parameters are optimized by using training data. A comparison of the estimated and real IPMC bending characteristic has been done to investigate the modeling ability of the designed NBBM.","PeriodicalId":158687,"journal":{"name":"ICCAS 2010","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAS 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2010.5669876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An ion polymer metal composite (IPMC) is an electro-active polymer that bends in response to a small applied electrical field as a result of mobility of cations in the polymer network and vice versa. This paper presents a novel accurate nonlinear black-box model (NBBM) for estimating the bending behavior of IPMC. The NBBM is based on a recurrent multi-layer perceptron neural network (RMLPNN) and a self-adjustable learning mechanism (SALM). The model parameters are optimized by using training data. A comparison of the estimated and real IPMC bending characteristic has been done to investigate the modeling ability of the designed NBBM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用非线性黑盒模型估计离子聚合物金属复合作动器的弯曲行为
离子聚合物金属复合材料(IPMC)是一种电活性聚合物,由于聚合物网络中阳离子的迁移而在小的外加电场下弯曲,反之亦然。本文提出了一种新的高精度非线性黑盒模型(NBBM),用于估算IPMC的弯曲性能。NBBM基于递归多层感知器神经网络(RMLPNN)和自调节学习机制(SALM)。利用训练数据对模型参数进行优化。通过对预估的和实际的IPMC弯曲特性的比较,研究了所设计的NBBM的建模能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low swing CMOS current mode charge pump A robust walking control of humanoid robots for industrial application Model-based software validation for automotive control systems Propose of unsealed deep groove ball bearing condition monitoring using sound analysis and fuzzy logic Effective covariance tracker based on adaptive changing of tracking window
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1