Bayesian network structure learning using cooperative coevolution

O. Barrière, E. Lutton, Pierre-Henri Wuillemin
{"title":"Bayesian network structure learning using cooperative coevolution","authors":"O. Barrière, E. Lutton, Pierre-Henri Wuillemin","doi":"10.1145/1569901.1570006","DOIUrl":null,"url":null,"abstract":"We propose a cooperative-coevolution - Parisian trend - algorithm, IMPEA (Independence Model based Parisian EA), to the problem of Bayesian networks structure estimation. It is based on an intermediate stage which consists of evaluating an independence model of the data to be modelled. The Parisian cooperative coevolution is particularly well suited to the structure of this intermediate problem, and allows to represent an independence model with help of a whole population, each individual being an independence statement, i.e. a component of the independence model. Once an independence model is estimated, a Bayesian network can be built. This two level resolution of the complex problem of Bayesian network structure estimation has the major advantage to avoid the difficult problem of direct acyclic graph representation within an evolutionary algorithm, which causes many troubles related to constraints handling and slows down algorithms. Comparative results with a deterministic algorithm, PC, on two test cases (including the Insurance BN benchmark), prove the efficiency of IMPEA, which provides better results than PC in a comparable computation time, and which is able to tackle more complex issues than PC.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We propose a cooperative-coevolution - Parisian trend - algorithm, IMPEA (Independence Model based Parisian EA), to the problem of Bayesian networks structure estimation. It is based on an intermediate stage which consists of evaluating an independence model of the data to be modelled. The Parisian cooperative coevolution is particularly well suited to the structure of this intermediate problem, and allows to represent an independence model with help of a whole population, each individual being an independence statement, i.e. a component of the independence model. Once an independence model is estimated, a Bayesian network can be built. This two level resolution of the complex problem of Bayesian network structure estimation has the major advantage to avoid the difficult problem of direct acyclic graph representation within an evolutionary algorithm, which causes many troubles related to constraints handling and slows down algorithms. Comparative results with a deterministic algorithm, PC, on two test cases (including the Insurance BN benchmark), prove the efficiency of IMPEA, which provides better results than PC in a comparable computation time, and which is able to tackle more complex issues than PC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于协同进化的贝叶斯网络结构学习
针对贝叶斯网络结构估计问题,提出了一种基于独立模型的Parisian EA (IMPEA)算法。它基于中间阶段,该阶段包括评估待建模数据的独立模型。巴黎合作协同进化特别适合这个中间问题的结构,并允许在整个群体的帮助下表示一个独立模型,每个个体都是一个独立声明,即独立模型的一个组成部分。一旦估计出独立性模型,就可以构建贝叶斯网络。这种两级解决贝叶斯网络结构估计的复杂问题的主要优点是避免了进化算法中直接无环图表示的难题,这导致了许多与约束处理相关的麻烦,并减慢了算法的速度。在两个测试用例(包括Insurance BN基准)上与确定性算法PC的比较结果证明了IMPEA的效率,在相当的计算时间内提供了比PC更好的结果,并且能够处理比PC更复杂的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metaheuristics for graph bisection Bayesian network structure learning using cooperative coevolution Session details: Track 10: genetic programming Simulating human grandmasters: evolution and coevolution of evaluation functions An evolutionary approach to feature function generation in application to biomedical image patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1