Chaotic Time Series Prediction Model for Fractional-Order Duffing's Oscillator

Kishore Bingi, B. Prusty
{"title":"Chaotic Time Series Prediction Model for Fractional-Order Duffing's Oscillator","authors":"Kishore Bingi, B. Prusty","doi":"10.1109/ICSCC51209.2021.9528128","DOIUrl":null,"url":null,"abstract":"This paper focuses on developing a prediction model for chaotic behavior in fractional-order Duffing's oscillator using neural networks. The model predicts the change in state variables' values of the oscillator using its past observations obtained by numerically solving the governing equations using the famous Grünwald-Letnikov's approach. Further, a comparison of hold-out and k-fold techniques is made using the Levenberg-Marquardt training algorithm. The results show the best-proposed model's prediction performance with mean square errors (MSE) and R2 values close to zero and one, respectively. In all the cases, the k-fold cross-validation has performed better than hold-out. However, the k-fold method has taken more computational time for training the model as it is trained k-times compared to one time using the hold-out method.","PeriodicalId":382982,"journal":{"name":"2021 8th International Conference on Smart Computing and Communications (ICSCC)","volume":"14 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Smart Computing and Communications (ICSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCC51209.2021.9528128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper focuses on developing a prediction model for chaotic behavior in fractional-order Duffing's oscillator using neural networks. The model predicts the change in state variables' values of the oscillator using its past observations obtained by numerically solving the governing equations using the famous Grünwald-Letnikov's approach. Further, a comparison of hold-out and k-fold techniques is made using the Levenberg-Marquardt training algorithm. The results show the best-proposed model's prediction performance with mean square errors (MSE) and R2 values close to zero and one, respectively. In all the cases, the k-fold cross-validation has performed better than hold-out. However, the k-fold method has taken more computational time for training the model as it is trained k-times compared to one time using the hold-out method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分数阶Duffing振荡器的混沌时间序列预测模型
利用神经网络建立了分数阶Duffing振荡器混沌行为的预测模型。该模型通过使用著名的gr nwald- letnikov方法对控制方程进行数值求解,利用其过去的观测结果预测振荡器状态变量值的变化。此外,使用Levenberg-Marquardt训练算法对hold-out和k-fold技术进行了比较。结果表明,该模型的预测均方误差(MSE)和R2值分别接近于0和1。在所有的情况下,k-fold交叉验证的表现都比保留要好。然而,k-fold方法花费了更多的计算时间来训练模型,因为与使用hold-out方法的一次训练相比,它需要训练k次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FYEO : A Character Level Model For Lip Reading Parameter Dependencies and Optimization of True Random Number Generator (TRNG) using Genetic Algorithm (GA) Chaotic Time Series Prediction Model for Fractional-Order Duffing's Oscillator Segmentation of Brain Tumour in MR Images Using Modified Deep Learning Network Classification of Power Quality Disturbances in Emerging Power System with Distributed Generation Using Space Phasor Model and Normalized Cross Correlation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1