Internal correction of dead-reckoning errors with the smart encoder trailer

J. Borenstein
{"title":"Internal correction of dead-reckoning errors with the smart encoder trailer","authors":"J. Borenstein","doi":"10.1109/IROS.1994.407400","DOIUrl":null,"url":null,"abstract":"This paper presents an innovative method for accurate mobile robot dead-reckoning, called internal position error correction (IPEC). In previous work, the IPEC method was successfully implemented on a specially designed mobile robot with two differential drive axles, called the multi-degree-of-freedom (MDOF) mobile robot. Experimental results with the MDOF robot showed consistently one to two orders of magnitude better dead-reckoning accuracy than systems based on conventional dead-reckoning. Yet, the IPEC system requires neither external references (such as navigation beacons, artificial landmarks, known floorplans, or satellite signals), nor inertial navigation aids (such as accelerometers or gyros). This paper focuses on our current efforts to implement the IPEC method on a device that can be added to any existing mobile robot. This device, called the \"Smart Encoder Trailer\" (SET), is a small, single-axle trailer with an incremental encoder on each of its two wheels. Although the SET is not functional yet, simulation results combined with experimental results from the (similarly configured) MDOF vehicle strongly suggest the feasibility of the SET implementation.<<ETX>>","PeriodicalId":437805,"journal":{"name":"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1994.407400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

This paper presents an innovative method for accurate mobile robot dead-reckoning, called internal position error correction (IPEC). In previous work, the IPEC method was successfully implemented on a specially designed mobile robot with two differential drive axles, called the multi-degree-of-freedom (MDOF) mobile robot. Experimental results with the MDOF robot showed consistently one to two orders of magnitude better dead-reckoning accuracy than systems based on conventional dead-reckoning. Yet, the IPEC system requires neither external references (such as navigation beacons, artificial landmarks, known floorplans, or satellite signals), nor inertial navigation aids (such as accelerometers or gyros). This paper focuses on our current efforts to implement the IPEC method on a device that can be added to any existing mobile robot. This device, called the "Smart Encoder Trailer" (SET), is a small, single-axle trailer with an incremental encoder on each of its two wheels. Although the SET is not functional yet, simulation results combined with experimental results from the (similarly configured) MDOF vehicle strongly suggest the feasibility of the SET implementation.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内部修正航位推算错误与智能编码器拖车
提出了一种新颖的移动机器人精确航位推算方法——内部位置误差校正(IPEC)。在之前的工作中,IPEC方法成功地实现在一个特殊设计的具有两个差动驱动轴的移动机器人上,称为多自由度(MDOF)移动机器人。实验结果表明,与传统的航位推算系统相比,mof机器人的航位推算精度提高了一到两个数量级。然而,IPEC系统既不需要外部参考(如导航信标、人工地标、已知平面图或卫星信号),也不需要惯性导航辅助(如加速度计或陀螺仪)。本文的重点是我们目前在一个可以添加到任何现有移动机器人的设备上实现IPEC方法的努力。这种装置被称为“智能编码器拖车”(SET),是一种小型单轴拖车,两个车轮上各有一个增量编码器。虽然SET尚未实现功能,但仿真结果与(类似配置的)MDOF车辆的实验结果相结合,强烈表明SET实现的可行性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An integrated approach to achieve dextrous grasping from task level specification Fuzzy logic joint path generation for kinematic redundant manipulators with multiple criteria Visual collision avoidance by segmentation Autonomous sonar navigation in indoor, unknown and unstructured environments Internal correction of dead-reckoning errors with the smart encoder trailer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1