Throwing-mine detection based on azimuth coherence

H. Sun, Chang Wen-ge, Zhaohe Liu
{"title":"Throwing-mine detection based on azimuth coherence","authors":"H. Sun, Chang Wen-ge, Zhaohe Liu","doi":"10.1109/ICCPS.2015.7454150","DOIUrl":null,"url":null,"abstract":"Throwing-mine detection is a typical problem of low RCS (radar cross section) targets detection in heavy clutter, in which the high false alarm rate is a difficult problem. Classical CFAR (Constant False Alarm Rate) detection algorithm only utilizes the image contrast characteristics, in the case of low SNR (Signal to Noise Ratio), a large number of false alarms generates. In order to further reduce false alarm rate, CFAR-IHP (Constant False Alarm Rate-Internal Hermitian Product) detection algorithm is proposed in this paper. CFAR-IHP is based on CFAR and target azimuth coherence characteristic, therefore, we first get the sub-aperture image sequence to extract target azimuth information by the sub-aperture processing algorithm for SAR image. Lastly, based on Ku-band SAR data, we use CFAR-IHP (Constant False Alarm Rate-Internal Hermitian Product) algorithm to detect the targets, experimental results show that the method further eliminate the clutter and the azimuth coherence helpfully reduces the false alarms.","PeriodicalId":319991,"journal":{"name":"2015 IEEE International Conference on Communication Problem-Solving (ICCP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Communication Problem-Solving (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPS.2015.7454150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Throwing-mine detection is a typical problem of low RCS (radar cross section) targets detection in heavy clutter, in which the high false alarm rate is a difficult problem. Classical CFAR (Constant False Alarm Rate) detection algorithm only utilizes the image contrast characteristics, in the case of low SNR (Signal to Noise Ratio), a large number of false alarms generates. In order to further reduce false alarm rate, CFAR-IHP (Constant False Alarm Rate-Internal Hermitian Product) detection algorithm is proposed in this paper. CFAR-IHP is based on CFAR and target azimuth coherence characteristic, therefore, we first get the sub-aperture image sequence to extract target azimuth information by the sub-aperture processing algorithm for SAR image. Lastly, based on Ku-band SAR data, we use CFAR-IHP (Constant False Alarm Rate-Internal Hermitian Product) algorithm to detect the targets, experimental results show that the method further eliminate the clutter and the azimuth coherence helpfully reduces the false alarms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于方位相干的抛雷探测
抛雷探测是典型的重杂波条件下低雷达截面积目标探测问题,其中高虚警率是一个难题。经典的CFAR (Constant False Alarm Rate)检测算法仅仅利用了图像的对比度特性,在低信噪比的情况下,会产生大量的虚警。为了进一步降低虚警率,本文提出了恒虚警率-内厄米积(CFAR-IHP)检测算法。CFAR- ihp是基于CFAR和目标方位相干特性,因此,我们首先得到子孔径图像序列,通过SAR图像的子孔径处理算法提取目标方位信息。最后,基于ku波段SAR数据,采用恒定虚警率-内厄米积(CFAR-IHP)算法对目标进行检测,实验结果表明,该方法进一步消除了杂波和方位相干性,有助于降低虚警。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A matching algorithm based on global viewpoint difference rectification for framework imagery Design of microstrip array antenna for angle measurement based on dual-baseline method Throwing-mine detection based on azimuth coherence Analysis and design of dual-feed circularly polarized U-slot microstrip antennas P2P flow classification based on wavelet transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1