Least square support vector machine technique for short term solar irradiance forecasting

Fahteem Hamamy, A. M. Omar
{"title":"Least square support vector machine technique for short term solar irradiance forecasting","authors":"Fahteem Hamamy, A. M. Omar","doi":"10.1063/1.5118141","DOIUrl":null,"url":null,"abstract":"Application of support vector machine (SVM) has been widely used in regression and prediction. Accurate prediction of daily solar irradiance is important in photovoltaic power system since rapid changes in solar irradiance will easily affect the performance of the whole system. This paper presents the short term future prediction of the solar irradiance using least square support vector machine (LSSVM). Historical solar data set including daily solar irradiance over a period of three years (1 January 2014 to 31 December 2016) has been collected at Green Energy Research Centre, Universiti Teknologi Mara (UiTM) Shah Alam, Selangor. This related information shall be used in prediction of the future solar irradiance which useful for predicting electrical parameters of a PV system especially large scale solar (LSS) farm. The simulation was carried out using SVM Toolbox in MATLAB software. The results show good agreement between the predicted and the measured values.Application of support vector machine (SVM) has been widely used in regression and prediction. Accurate prediction of daily solar irradiance is important in photovoltaic power system since rapid changes in solar irradiance will easily affect the performance of the whole system. This paper presents the short term future prediction of the solar irradiance using least square support vector machine (LSSVM). Historical solar data set including daily solar irradiance over a period of three years (1 January 2014 to 31 December 2016) has been collected at Green Energy Research Centre, Universiti Teknologi Mara (UiTM) Shah Alam, Selangor. This related information shall be used in prediction of the future solar irradiance which useful for predicting electrical parameters of a PV system especially large scale solar (LSS) farm. The simulation was carried out using SVM Toolbox in MATLAB software. The results show good agreement between the predicted and the measured values.","PeriodicalId":112912,"journal":{"name":"APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2019)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5118141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Application of support vector machine (SVM) has been widely used in regression and prediction. Accurate prediction of daily solar irradiance is important in photovoltaic power system since rapid changes in solar irradiance will easily affect the performance of the whole system. This paper presents the short term future prediction of the solar irradiance using least square support vector machine (LSSVM). Historical solar data set including daily solar irradiance over a period of three years (1 January 2014 to 31 December 2016) has been collected at Green Energy Research Centre, Universiti Teknologi Mara (UiTM) Shah Alam, Selangor. This related information shall be used in prediction of the future solar irradiance which useful for predicting electrical parameters of a PV system especially large scale solar (LSS) farm. The simulation was carried out using SVM Toolbox in MATLAB software. The results show good agreement between the predicted and the measured values.Application of support vector machine (SVM) has been widely used in regression and prediction. Accurate prediction of daily solar irradiance is important in photovoltaic power system since rapid changes in solar irradiance will easily affect the performance of the whole system. This paper presents the short term future prediction of the solar irradiance using least square support vector machine (LSSVM). Historical solar data set including daily solar irradiance over a period of three years (1 January 2014 to 31 December 2016) has been collected at Green Energy Research Centre, Universiti Teknologi Mara (UiTM) Shah Alam, Selangor. This related information shall be used in prediction of the future solar irradiance which useful for predicting electrical parameters of a PV system especially large scale solar (LSS) farm. The simulation was carried out using SVM Toolbox in MATLAB software. The results show good agreement between the predicted and the measured values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短期太阳辐照度预测的最小二乘支持向量机技术
支持向量机(SVM)在回归和预测中得到了广泛的应用。由于太阳辐照度的快速变化容易影响整个系统的性能,因此准确预测日太阳辐照度对光伏发电系统至关重要。本文提出了利用最小二乘支持向量机(LSSVM)对太阳辐照度进行短期预测的方法。历史太阳数据集包括三年间(2014年1月1日至2016年12月31日)的每日太阳辐照度,收集于雪兰莪州沙阿南马拉科技大学(UiTM)绿色能源研究中心。这些相关信息将用于预测未来的太阳辐照度,这对于预测光伏系统,特别是大型太阳能(LSS)农场的电气参数很有用。利用MATLAB软件中的SVM工具箱进行仿真。结果表明,预测值与实测值吻合较好。支持向量机(SVM)在回归和预测中得到了广泛的应用。由于太阳辐照度的快速变化容易影响整个系统的性能,因此准确预测日太阳辐照度对光伏发电系统至关重要。本文提出了利用最小二乘支持向量机(LSSVM)对太阳辐照度进行短期预测的方法。历史太阳数据集包括三年间(2014年1月1日至2016年12月31日)的每日太阳辐照度,收集于雪兰莪州沙阿南马拉科技大学(UiTM)绿色能源研究中心。这些相关信息将用于预测未来的太阳辐照度,这对于预测光伏系统,特别是大型太阳能(LSS)农场的电气参数很有用。利用MATLAB软件中的SVM工具箱进行仿真。结果表明,预测值与实测值吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical investigation of the aerodynamic characteristics of a coupling of the three blades VAWT with a movable vanes Least square support vector machine technique for short term solar irradiance forecasting Thin film coating of copper nanoparticles with DC magnetron sputtering via physical vapor deposition Optimisation of scissor lifting machine structures using finite element analysis (FEA) Retina images classification using histogram of equivalent pattern (HEP) texture descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1