Latent topic visual language model for object categorization

Lei Wu, Nenghai Yu, J. Liu, Mingjing Li
{"title":"Latent topic visual language model for object categorization","authors":"Lei Wu, Nenghai Yu, J. Liu, Mingjing Li","doi":"10.5220/0003491601490158","DOIUrl":null,"url":null,"abstract":"This paper presents a latent topic visual language model to handle variation problem in object categorization. Variations including different views, styles, poses, etc., have greatly affected the spatial arrangement and distribution of visual features, on which previous categorization models largely depend. Taking the object variations as hidden topics within each category, the proposed model explores the relationship between object variations and visual feature arrangement in the traditional visual language modeling process. With this improvement, the accuracy of object categorization is further boosted. Experiments on Caltech 101 dataset have shown that this model makes sense and is effective.","PeriodicalId":103791,"journal":{"name":"Proceedings of the International Conference on Signal Processing and Multimedia Applications","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Signal Processing and Multimedia Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003491601490158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a latent topic visual language model to handle variation problem in object categorization. Variations including different views, styles, poses, etc., have greatly affected the spatial arrangement and distribution of visual features, on which previous categorization models largely depend. Taking the object variations as hidden topics within each category, the proposed model explores the relationship between object variations and visual feature arrangement in the traditional visual language modeling process. With this improvement, the accuracy of object categorization is further boosted. Experiments on Caltech 101 dataset have shown that this model makes sense and is effective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向对象分类的潜在主题视觉语言模型
针对对象分类中的变异问题,提出了一种潜在主题视觉语言模型。不同的视角、风格、姿势等变化极大地影响了视觉特征的空间排列和分布,而以往的分类模型很大程度上依赖于视觉特征的空间排列和分布。该模型将对象变化作为每个类别中的隐藏主题,探讨了传统视觉语言建模过程中对象变化与视觉特征排列之间的关系。通过这种改进,进一步提高了对象分类的准确性。在Caltech 101数据集上的实验表明,该模型是有意义和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Latent topic visual language model for object categorization Optimal combination of low-level features for surveillance object retrieval Managing multiple media streams in HTML5: The IEEE 1599-2008 case study Automatic sound restoration system concepts and design Visual AER-based processing with convolutions for a parallel supercomputer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1