Visual AER-based processing with convolutions for a parallel supercomputer

R. Montero-Gonzalez, Arturo Morgado Estévez, F. Perez-Peña, A. Linares-Barranco, A. Jiménez-Fernandez, B. Linares-Barranco, J. Pérez-Carrasco
{"title":"Visual AER-based processing with convolutions for a parallel supercomputer","authors":"R. Montero-Gonzalez, Arturo Morgado Estévez, F. Perez-Peña, A. Linares-Barranco, A. Jiménez-Fernandez, B. Linares-Barranco, J. Pérez-Carrasco","doi":"10.5220/0003519100850090","DOIUrl":null,"url":null,"abstract":"This paper is based on the simulation of a convolution model for multimedia applications using the neuro-inspired Address-Event-Representation (AER) philosophy. AER is a communication mechanism between chips gathering thousands of spiking neurons. These spiking neurons are able to process the visual information in a frame-free style like the human brain do. All the spiking neurons are working in parallel and each of them implement an operation when an input stimulus is received. The result of this operation could be, or not, to produce an output event. There exist AER retinas and other sensors, AER processors (convolvers, WTA filters), learning chips and robot actuators. In this paper we present the implementation of an AER convolution processor for the supercomputer CRS (cluster research support) of the University of Cadiz (UCA). This research involves a test cases design in which the optimal parameters are set to run the AER convolution in parallel processors. These cases consist on running the convolution taking an image divided in different number of parts, applying to each part a Sobel filter for edge detection, and based on the AER-TOOL simulator. Runtimes are compared for all cases and the optimal configuration of the system is discussed. In general, CRS obtain better performances when the image is subdivided than for the whole image processing.","PeriodicalId":103791,"journal":{"name":"Proceedings of the International Conference on Signal Processing and Multimedia Applications","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Signal Processing and Multimedia Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003519100850090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is based on the simulation of a convolution model for multimedia applications using the neuro-inspired Address-Event-Representation (AER) philosophy. AER is a communication mechanism between chips gathering thousands of spiking neurons. These spiking neurons are able to process the visual information in a frame-free style like the human brain do. All the spiking neurons are working in parallel and each of them implement an operation when an input stimulus is received. The result of this operation could be, or not, to produce an output event. There exist AER retinas and other sensors, AER processors (convolvers, WTA filters), learning chips and robot actuators. In this paper we present the implementation of an AER convolution processor for the supercomputer CRS (cluster research support) of the University of Cadiz (UCA). This research involves a test cases design in which the optimal parameters are set to run the AER convolution in parallel processors. These cases consist on running the convolution taking an image divided in different number of parts, applying to each part a Sobel filter for edge detection, and based on the AER-TOOL simulator. Runtimes are compared for all cases and the optimal configuration of the system is discussed. In general, CRS obtain better performances when the image is subdivided than for the whole image processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉aer的并行超级计算机卷积处理
本文基于基于神经启发的地址-事件-表示(AER)哲学的多媒体应用卷积模型的仿真。AER是一种聚集了数千个尖峰神经元的芯片之间的通信机制。这些尖峰神经元能够像人类大脑一样以无帧的方式处理视觉信息。所有的尖峰神经元并行工作,当接收到输入刺激时,它们中的每一个都执行一个操作。此操作的结果可以生成输出事件,也可以不生成输出事件。目前已有AER视网膜和其他传感器、AER处理器(卷积器、WTA滤波器)、学习芯片和机器人执行器。本文介绍了加的斯大学(UCA)超级计算机CRS(集群研究支持)的AER卷积处理器的实现。本研究涉及一个测试用例的设计,其中设置了在并行处理器上运行AER卷积的最佳参数。这些情况包括运行卷积,将图像分成不同数量的部分,对每个部分应用Sobel滤波器进行边缘检测,并基于AER-TOOL模拟器。比较了所有情况下的运行时间,并讨论了系统的最佳配置。总的来说,CRS在对图像进行细分处理时比在对整个图像进行处理时获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Latent topic visual language model for object categorization Optimal combination of low-level features for surveillance object retrieval Managing multiple media streams in HTML5: The IEEE 1599-2008 case study Automatic sound restoration system concepts and design Visual AER-based processing with convolutions for a parallel supercomputer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1