Insight on Human Activity Recognition Using the Deep Learning Approach

Smita S. Kulkarni, Sangeeta Jadhav
{"title":"Insight on Human Activity Recognition Using the Deep Learning Approach","authors":"Smita S. Kulkarni, Sangeeta Jadhav","doi":"10.1109/ESCI56872.2023.10099759","DOIUrl":null,"url":null,"abstract":"This work proposes a video understanding technique that primarily focuses on the individual action recognition appearing in the video. The state-of-the-art showed promising work in video understanding. Though, it's essential to require inclusive information on human action in real-time CCTV video surveillance, sports video analysis, health care, etc. This paper proposed a transfer learning deep neural network model designed for recognizing individual actions accomplished by multiple people in a video sequence. This research established a deep model which uses Region-Of-Interest (RoI) pooling layer to capture automated features from a specified video frame to recognize individual actions. The MobileNet model accomplishes this as the backbone to recognize individual actions from each video frame. The accuracy score of the model was compared with the CNN models VGG-19,InceptionV3, and MobileNet. The MobileNet is computationally low-cost and enhances the performance of individual action recognition performed by multiple humans in a video frame. The investigational results were evaluated by varying learning parameters, and optimizer of deep neural network. The experimental results of the proposed model for individual action recognition demonstrate the improved efficiency of the standard benchmark collective activity dataset. This research illustrates the progress of action recognition by employing the transfer learning CNN model along with RoI pooling layer.","PeriodicalId":441215,"journal":{"name":"2023 International Conference on Emerging Smart Computing and Informatics (ESCI)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Emerging Smart Computing and Informatics (ESCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCI56872.2023.10099759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a video understanding technique that primarily focuses on the individual action recognition appearing in the video. The state-of-the-art showed promising work in video understanding. Though, it's essential to require inclusive information on human action in real-time CCTV video surveillance, sports video analysis, health care, etc. This paper proposed a transfer learning deep neural network model designed for recognizing individual actions accomplished by multiple people in a video sequence. This research established a deep model which uses Region-Of-Interest (RoI) pooling layer to capture automated features from a specified video frame to recognize individual actions. The MobileNet model accomplishes this as the backbone to recognize individual actions from each video frame. The accuracy score of the model was compared with the CNN models VGG-19,InceptionV3, and MobileNet. The MobileNet is computationally low-cost and enhances the performance of individual action recognition performed by multiple humans in a video frame. The investigational results were evaluated by varying learning parameters, and optimizer of deep neural network. The experimental results of the proposed model for individual action recognition demonstrate the improved efficiency of the standard benchmark collective activity dataset. This research illustrates the progress of action recognition by employing the transfer learning CNN model along with RoI pooling layer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习方法对人类活动识别的洞察
本文提出了一种主要关注视频中出现的个体动作识别的视频理解技术。最先进的技术在视频理解方面显示出了有希望的工作。然而,在实时闭路电视视频监控、体育视频分析、医疗保健等领域,需要包含人类行为的信息是必不可少的。本文提出了一种迁移学习深度神经网络模型,用于识别视频序列中多人完成的单个动作。本研究建立了一个深度模型,利用感兴趣区域(RoI)池化层从指定的视频帧中捕获自动特征来识别单个动作。MobileNet模型实现了这一点,作为识别每个视频帧中的单个动作的主干。将该模型的准确率得分与CNN模型VGG-19、InceptionV3和MobileNet进行比较。MobileNet的计算成本较低,并提高了视频帧中多人执行的个人动作识别的性能。通过不同的学习参数和深度神经网络优化器对研究结果进行了评估。个体行为识别的实验结果表明,该模型比标准基准集体行为数据集的识别效率有所提高。本研究利用迁移学习CNN模型和RoI池化层来说明动作识别的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Approach to Maze Solving Algorithm Android Based Smart Appointment System (SAS) for Booking and Interacting with Teacher for Counselling A Compact Asymmetric Coplanar Strip (ACS) Antenna for WLAN and Wi-Fi Applications Insight on Human Activity Recognition Using the Deep Learning Approach Patients' Health Analysis using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1