A Dual Prediction Network for Image Captioning

Yanming Guo, Y. Liu, M. D. Boer, Li Liu, M. Lew
{"title":"A Dual Prediction Network for Image Captioning","authors":"Yanming Guo, Y. Liu, M. D. Boer, Li Liu, M. Lew","doi":"10.1109/ICME.2018.8486491","DOIUrl":null,"url":null,"abstract":"General captioning practice involves a single forward prediction, with the aim of predicting the word in the next timestep given the word in the current timestep. In this paper, we present a novel captioning framework, namely Dual Prediction Network (DPN), which is end-to-end trainable and addresses the captioning problem with dual predictions. Specifically, the dual predictions consist of a forward prediction to generate the next word from the current input word, as well as a backward prediction to reconstruct the input word using the predicted word. DPN has two appealing properties: 1) By introducing an extra supervision signal on the prediction, DPN can better capture the interplay between the input and the target; 2) Utilizing the reconstructed input, DPN can make another new prediction. During the test phase, we average both predictions to formulate the final target sentence. Experimental results on the MS COCO dataset demonstrate that, benefiting from the reconstruction step, both generated predictions in DPN outperform the predictions of methods based on the general captioning practice (single forward prediction), and averaging them can bring a further accuracy boost. Overall, DPN achieves competitive results with state-of-the-art approaches, across multiple evaluation metrics.","PeriodicalId":426613,"journal":{"name":"2018 IEEE International Conference on Multimedia and Expo (ICME)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2018.8486491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

General captioning practice involves a single forward prediction, with the aim of predicting the word in the next timestep given the word in the current timestep. In this paper, we present a novel captioning framework, namely Dual Prediction Network (DPN), which is end-to-end trainable and addresses the captioning problem with dual predictions. Specifically, the dual predictions consist of a forward prediction to generate the next word from the current input word, as well as a backward prediction to reconstruct the input word using the predicted word. DPN has two appealing properties: 1) By introducing an extra supervision signal on the prediction, DPN can better capture the interplay between the input and the target; 2) Utilizing the reconstructed input, DPN can make another new prediction. During the test phase, we average both predictions to formulate the final target sentence. Experimental results on the MS COCO dataset demonstrate that, benefiting from the reconstruction step, both generated predictions in DPN outperform the predictions of methods based on the general captioning practice (single forward prediction), and averaging them can bring a further accuracy boost. Overall, DPN achieves competitive results with state-of-the-art approaches, across multiple evaluation metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于图像标注的双预测网络
一般的字幕实践包括一个前向预测,目的是在给定当前时间步长的单词的情况下,预测下一个时间步长的单词。在本文中,我们提出了一个新的字幕框架,即双重预测网络(Dual Prediction Network, DPN),它是端到端可训练的,并解决了双重预测的字幕问题。具体来说,双重预测包括从当前输入单词生成下一个单词的前向预测,以及使用预测单词重建输入单词的后向预测。DPN有两个吸引人的特性:1)通过在预测中引入额外的监督信号,DPN可以更好地捕捉输入与目标之间的相互作用;2)利用重构后的输入,DPN可以再次进行新的预测。在测试阶段,我们对两个预测取平均值,以形成最终的目标句子。MS COCO数据集上的实验结果表明,得益于重建步骤,DPN中生成的两种预测都优于基于一般字幕实践(单正向预测)的方法的预测,并且对它们进行平均可以进一步提高精度。总体而言,DPN通过最先进的方法实现了具有竞争力的结果,跨越多个评估指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spherical Structural Similarity Index for Objective Omnidirectional Video Quality Assessment Abandoned Object Detection Using Pixel-Based Finite State Machine and Single Shot Multibox Detector A Dual Prediction Network for Image Captioning Single Image Layer Separation via Deep Admm Unrolling Video Stereo Matching with Temporally Consistent Belief Propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1