Single Image Layer Separation via Deep Admm Unrolling

Risheng Liu, Zhiying Jiang, Xin Fan, Haojie Li, Zhongxuan Luo
{"title":"Single Image Layer Separation via Deep Admm Unrolling","authors":"Risheng Liu, Zhiying Jiang, Xin Fan, Haojie Li, Zhongxuan Luo","doi":"10.1109/ICME.2018.8486511","DOIUrl":null,"url":null,"abstract":"Single image layer separation aims to divide the observed image into two independent components according to special task requirements and has been widely used in many vision and multimedia applications. Because this task is fundamentally ill-posed, most existing approaches tend to design complex priors on the separated layers. However, the cost function with complex prior regularization is hard to optimize. The performance is also compromised by fixed iteration schemes and less data fitting ability. More importantly, it is also challenging to design a unified framework to separate image layers for different applications. To partially mitigate the above limitations, we develop a flexible optimization unrolling technique to incorporate deep architectures into iterations for adaptive image layer separation. Specifically, we first design a general energy model with implicit priors and adopt the widely used alternating direction method of multiplier (ADMM) to establish our basic iteration scheme. By unrolling with residual convolution architectures, we successfully obtain a simple, flexible, and data-dependent image separation method. Extensive experiments on the tasks of rain streak removal and reflection removal validate the effectiveness of our approach.","PeriodicalId":426613,"journal":{"name":"2018 IEEE International Conference on Multimedia and Expo (ICME)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2018.8486511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Single image layer separation aims to divide the observed image into two independent components according to special task requirements and has been widely used in many vision and multimedia applications. Because this task is fundamentally ill-posed, most existing approaches tend to design complex priors on the separated layers. However, the cost function with complex prior regularization is hard to optimize. The performance is also compromised by fixed iteration schemes and less data fitting ability. More importantly, it is also challenging to design a unified framework to separate image layers for different applications. To partially mitigate the above limitations, we develop a flexible optimization unrolling technique to incorporate deep architectures into iterations for adaptive image layer separation. Specifically, we first design a general energy model with implicit priors and adopt the widely used alternating direction method of multiplier (ADMM) to establish our basic iteration scheme. By unrolling with residual convolution architectures, we successfully obtain a simple, flexible, and data-dependent image separation method. Extensive experiments on the tasks of rain streak removal and reflection removal validate the effectiveness of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单图像层分离通过深度Admm展开
单图像层分离的目的是根据特殊的任务要求,将观察到的图像分成两个独立的分量,在许多视觉和多媒体应用中得到了广泛的应用。因为这个任务基本上是病态的,大多数现有的方法倾向于在分离的层上设计复杂的先验。然而,具有复杂先验正则化的代价函数很难优化。固定的迭代方案和较差的数据拟合能力也影响了算法的性能。更重要的是,设计一个统一的框架来为不同的应用分离图像层也是一个挑战。为了部分缓解上述限制,我们开发了一种灵活的优化展开技术,将深度架构纳入自适应图像层分离的迭代中。具体而言,我们首先设计了一个具有隐式先验的通用能量模型,并采用广泛使用的乘法器交替方向法(ADMM)建立了我们的基本迭代方案。通过残差卷积结构展开,我们成功地获得了一种简单、灵活、数据相关的图像分离方法。在去除雨条纹和去除反射任务上的大量实验验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spherical Structural Similarity Index for Objective Omnidirectional Video Quality Assessment Abandoned Object Detection Using Pixel-Based Finite State Machine and Single Shot Multibox Detector A Dual Prediction Network for Image Captioning Single Image Layer Separation via Deep Admm Unrolling Video Stereo Matching with Temporally Consistent Belief Propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1