Lakshya Bhatnagar, G. Paniagua, D. G. Cuadrado, Papa Aye N. Aye-Addo, Antonio Castillo Sauca, F. Lozano, Matthew J. Bloxham
{"title":"Uncertainty in High-Pressure Stator Performance Measurement in an Annular Cascade at Engine-Representative Reynolds and Mach","authors":"Lakshya Bhatnagar, G. Paniagua, D. G. Cuadrado, Papa Aye N. Aye-Addo, Antonio Castillo Sauca, F. Lozano, Matthew J. Bloxham","doi":"10.1115/gt2021-59702","DOIUrl":null,"url":null,"abstract":"\n The betterment of the turbine performance plays a prime role in all future transportation and energy production systems. Precise uncertainty quantification of experimental measurement of any performance differential is therefore essential for turbine development programs. In this paper, the uncertainty analysis of loss measurements in a high-pressure turbine vane are presented. Tests were performed on a stator geometry at engine representative conditions in a new annular turbine module called BRASTA (Big Rig for Annular Stationary Turbine Analysis) located within the Purdue Experimental Turbine Aerothermal Lab. The aerodynamic probes are described with emphasis on their calibration and uncertainty analysis, first considering single point measurement, followed by the spatial averaging implications. The change of operating conditions and flow blockage due to measurement probes are analyzed using CFD, and corrections are recommended on the measurement data. The test section and its characterization are presented, including calibration of the sonic valve. The sonic valve calibration is necessary to ensure a wide range of operation in Mach and Reynolds. Finally, the vane data are discussed, emphasizing their systematic and stochastic uncertainty.","PeriodicalId":169840,"journal":{"name":"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-59702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The betterment of the turbine performance plays a prime role in all future transportation and energy production systems. Precise uncertainty quantification of experimental measurement of any performance differential is therefore essential for turbine development programs. In this paper, the uncertainty analysis of loss measurements in a high-pressure turbine vane are presented. Tests were performed on a stator geometry at engine representative conditions in a new annular turbine module called BRASTA (Big Rig for Annular Stationary Turbine Analysis) located within the Purdue Experimental Turbine Aerothermal Lab. The aerodynamic probes are described with emphasis on their calibration and uncertainty analysis, first considering single point measurement, followed by the spatial averaging implications. The change of operating conditions and flow blockage due to measurement probes are analyzed using CFD, and corrections are recommended on the measurement data. The test section and its characterization are presented, including calibration of the sonic valve. The sonic valve calibration is necessary to ensure a wide range of operation in Mach and Reynolds. Finally, the vane data are discussed, emphasizing their systematic and stochastic uncertainty.