Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling

Nivesh Dommaraju, M. Bujny, S. Menzel, M. Olhofer, F. Duddeck
{"title":"Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling","authors":"Nivesh Dommaraju, M. Bujny, S. Menzel, M. Olhofer, F. Duddeck","doi":"10.1109/CEC55065.2022.9870326","DOIUrl":null,"url":null,"abstract":"Topology optimization optimizes material layout in a design space for a given objective, such as crash energy absorption, and a set of boundary conditions. In industrial applications, multi-objective topology optimization requires expensive simulations to evaluate the objectives and generate multiple Pareto-optimal solutions. So, it is more economical to identify preferred regions on the Pareto front and generate only the desired solutions. Clustering methods, a widely used subclass of machine learning methods, provide an unsupervised approach to summarize the dataset, which eases the identification of the preferred set of designs. However, generating solutions similar to the preferred designs based on different metrics is a challenging task. In this paper, we present an interactive method to generate designs similar to a preferred set using one of the state-of-the-art weighted-sum approaches called scaled energy weighting - hybrid cellular automata (SEW-HCA). To avoid unnecessary computations, metamodels are used to predict the desired weight vectors needed by SEW-HCA. We evaluate an application of our method for cooperative topology optimization using a cantilever multi-load-case problem and a crashworthiness optimization problem. Using the proposed method, we could successfully generate designs that are similar to preferred solutions based on geometry and performance. We believe that this is a crucial component that will improve the usefulness of multi-objective topology optimization in real-world applications.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Topology optimization optimizes material layout in a design space for a given objective, such as crash energy absorption, and a set of boundary conditions. In industrial applications, multi-objective topology optimization requires expensive simulations to evaluate the objectives and generate multiple Pareto-optimal solutions. So, it is more economical to identify preferred regions on the Pareto front and generate only the desired solutions. Clustering methods, a widely used subclass of machine learning methods, provide an unsupervised approach to summarize the dataset, which eases the identification of the preferred set of designs. However, generating solutions similar to the preferred designs based on different metrics is a challenging task. In this paper, we present an interactive method to generate designs similar to a preferred set using one of the state-of-the-art weighted-sum approaches called scaled energy weighting - hybrid cellular automata (SEW-HCA). To avoid unnecessary computations, metamodels are used to predict the desired weight vectors needed by SEW-HCA. We evaluate an application of our method for cooperative topology optimization using a cantilever multi-load-case problem and a crashworthiness optimization problem. Using the proposed method, we could successfully generate designs that are similar to preferred solutions based on geometry and performance. We believe that this is a crucial component that will improve the usefulness of multi-objective topology optimization in real-world applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚类和元建模的协同多目标拓扑优化
拓扑优化是针对给定目标,如碰撞能量吸收和一组边界条件,在设计空间中优化材料布局。在工业应用中,多目标拓扑优化需要昂贵的仿真来评估目标并生成多个帕累托最优解。因此,在帕累托前线识别优选区域并只生成所需的解决方案是更经济的。聚类方法是机器学习方法的一个广泛使用的子类,它提供了一种无监督的方法来总结数据集,从而简化了优选设计集的识别。然而,基于不同的度量标准生成与首选设计相似的解决方案是一项具有挑战性的任务。在本文中,我们提出了一种交互式方法来生成类似于首选集的设计,使用最先进的加权和方法之一,称为缩放能量加权-混合元胞自动机(SEW-HCA)。为了避免不必要的计算,使用元模型来预测SEW-HCA所需的期望权向量。我们利用悬臂多载荷情况问题和耐撞优化问题评估了我们的方法在协同拓扑优化中的应用。使用所提出的方法,我们可以成功地生成与基于几何和性能的首选解决方案相似的设计。我们相信,这是一个至关重要的组件,将提高多目标拓扑优化在实际应用中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1