Intermetallic reactions between lead-free SnAgCu solder and Ni(P)/Au surface finish on PWBs

K. Zeng, V. Vuorinen, J. Kivilahti
{"title":"Intermetallic reactions between lead-free SnAgCu solder and Ni(P)/Au surface finish on PWBs","authors":"K. Zeng, V. Vuorinen, J. Kivilahti","doi":"10.1109/ECTC.2001.927808","DOIUrl":null,"url":null,"abstract":"Due to its toxicity, Pb is likely to be eliminated eventually from electronic products and, therefore, it is important to understand and control the compatibility of the Sn-Ag-Cu solder alloys with Ni(P)/Au metallizations. Transmission electron microscopy and scanning electron microscopy were employed to analyze the interfacial microstructure. The intermetallic compound Cu/sub 6/Sn/sub 5/, containing a small amount of dissolved Ni, was found to form preferentially on the Ni coating. This compound layer served as a barrier for the reaction of Sn with the Ni coating. On the Ni(P) side, a nickel phosphide was identified. Thermodynamic evaluation of the Cu-Ni-Sn system was carried out to rationalize the enrichment of Cu at the solder/finish interface. Effects of the interfacial reactions on joint reliability are discussed.","PeriodicalId":340217,"journal":{"name":"2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2001.927808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Due to its toxicity, Pb is likely to be eliminated eventually from electronic products and, therefore, it is important to understand and control the compatibility of the Sn-Ag-Cu solder alloys with Ni(P)/Au metallizations. Transmission electron microscopy and scanning electron microscopy were employed to analyze the interfacial microstructure. The intermetallic compound Cu/sub 6/Sn/sub 5/, containing a small amount of dissolved Ni, was found to form preferentially on the Ni coating. This compound layer served as a barrier for the reaction of Sn with the Ni coating. On the Ni(P) side, a nickel phosphide was identified. Thermodynamic evaluation of the Cu-Ni-Sn system was carried out to rationalize the enrichment of Cu at the solder/finish interface. Effects of the interfacial reactions on joint reliability are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无铅SnAgCu焊料与印制板表面Ni(P)/Au的金属间反应
由于其毒性,Pb很可能最终从电子产品中被消除,因此,了解和控制Sn-Ag-Cu钎料合金与Ni(P)/Au金属化的相容性非常重要。采用透射电镜和扫描电镜对界面微观结构进行了分析。金属间化合物Cu/sub 6/Sn/sub 5/优先在Ni涂层上形成,其中含有少量溶解的Ni。该复合层为锡与Ni镀层的反应提供了屏障。在Ni(P)侧,发现了一个磷化镍。对Cu- ni - sn体系进行了热力学评价,以使Cu在焊料/抛光界面的富集合理化。讨论了界面反应对节理可靠性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A quasi three-dimensional distributed electromagnetic model for complex power distribution networks Thermal fatigue properties of lead-free solders on Cu and NiP under bump metallurgies Microlens arrays with integrated thin film power monitors Intermetallic reactions between lead-free SnAgCu solder and Ni(P)/Au surface finish on PWBs Nondestructive detection of intermetallics in solder joints by high energy X-ray diffraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1