Image Caption Enhancement with GRIT, Portable ResNet and BART Context-Tuning

Wuyang Zhang, Jianming Ma
{"title":"Image Caption Enhancement with GRIT, Portable ResNet and BART Context-Tuning","authors":"Wuyang Zhang, Jianming Ma","doi":"10.1109/UV56588.2022.10185494","DOIUrl":null,"url":null,"abstract":"This paper aims to create an image captioning novel architecture that infuses Grid and Region-based image caption transformer, ResNet, and BART language model to offer a more detail-oriented image captioning model. Conventional state-of-the-art image captioning models mainly focuses on region-based features. They rely on decent object detector architectures like Faster R-CNN to extract object-level information to describe the image’s content. Nevertheless, they cannot remove contextual information, high computational costs, and the ability to introduce in-depth external details of objects presented in the images—the replacement of conventional CNN-based detectors results in faster computation. The experiment can generate image captions comparatively fast with higher accuracy and details with contextual information.","PeriodicalId":211011,"journal":{"name":"2022 6th International Conference on Universal Village (UV)","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV56588.2022.10185494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to create an image captioning novel architecture that infuses Grid and Region-based image caption transformer, ResNet, and BART language model to offer a more detail-oriented image captioning model. Conventional state-of-the-art image captioning models mainly focuses on region-based features. They rely on decent object detector architectures like Faster R-CNN to extract object-level information to describe the image’s content. Nevertheless, they cannot remove contextual information, high computational costs, and the ability to introduce in-depth external details of objects presented in the images—the replacement of conventional CNN-based detectors results in faster computation. The experiment can generate image captions comparatively fast with higher accuracy and details with contextual information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像说明使用GRIT,便携式ResNet和BART上下文调整进行增强
本文旨在创建一种新的图像字幕架构,该架构注入了基于网格和区域的图像字幕转换器、ResNet和BART语言模型,以提供更面向细节的图像字幕模型。传统的图像字幕模型主要关注基于区域的特征。他们依靠体面的对象检测器架构,如Faster R-CNN来提取对象级信息来描述图像的内容。然而,它们不能去除上下文信息,计算成本高,并且能够引入图像中呈现的物体的深入外部细节-取代传统的基于cnn的检测器导致更快的计算。该实验能够相对较快地生成图像标题,具有较高的准确性,并且具有上下文信息的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generative Cooperative Network for Person Image Generation Image Caption Enhancement with GRIT, Portable ResNet and BART Context-Tuning Dynamical Simulation Study of Hybrid Solar-Fossil Fuel Thermochemical Storage and Electricity, Heat and Cold Generation System Bag of Tricks for “Vision Meet Alage” Object Detection Challenge Density Functional Theory Study of Adding Ionic Liquid to Aqueous Ammonia System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1