Bag of Tricks for “Vision Meet Alage” Object Detection Challenge

Xiaode Fu, Fei Shen, Xiaoyu Du, Zechao Li
{"title":"Bag of Tricks for “Vision Meet Alage” Object Detection Challenge","authors":"Xiaode Fu, Fei Shen, Xiaoyu Du, Zechao Li","doi":"10.1109/UV56588.2022.10185500","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce our solution to the “Vision Meets Algae” Workshop and Challenge (VisAlgae) in details. Since a large number of small objects and similar categories, the location and classification of algae are challenging. For that, we propose a bag of tricks for VisAlgae, including data augmentation, model architecture, and pipeline. For data augmentation, we introduce bounding-box jitter, mix-up, multi-scale, albu, and test time augmentation to increase sample diversity and randomness. We learn a better region of interest (RoI) features by adding global semantic information to RoI features. Especially a novelty double head is devised to enhance final features via reserving spatial and channel information. For the pipeline, We introduce the detector framework, backbone, stochastic weights averaging, pseudo labels, and weighted boxes fusion. Experimental results demonstrate that our approach can achieve an excellent mean average precision (mAP) performance of object detection.","PeriodicalId":211011,"journal":{"name":"2022 6th International Conference on Universal Village (UV)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV56588.2022.10185500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we introduce our solution to the “Vision Meets Algae” Workshop and Challenge (VisAlgae) in details. Since a large number of small objects and similar categories, the location and classification of algae are challenging. For that, we propose a bag of tricks for VisAlgae, including data augmentation, model architecture, and pipeline. For data augmentation, we introduce bounding-box jitter, mix-up, multi-scale, albu, and test time augmentation to increase sample diversity and randomness. We learn a better region of interest (RoI) features by adding global semantic information to RoI features. Especially a novelty double head is devised to enhance final features via reserving spatial and channel information. For the pipeline, We introduce the detector framework, backbone, stochastic weights averaging, pseudo labels, and weighted boxes fusion. Experimental results demonstrate that our approach can achieve an excellent mean average precision (mAP) performance of object detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“视觉满足”目标检测挑战的技巧袋
在本文中,我们详细介绍了我们的解决方案,以“视觉遇上藻类”研讨会和挑战(VisAlgae)。由于大量的小物体和相似的类别,藻类的定位和分类是具有挑战性的。为此,我们为VisAlgae提出了一系列技巧,包括数据增强、模型架构和管道。在数据增强方面,我们引入了边界盒抖动、混合、多尺度、模糊和测试时间增强来增加样本的多样性和随机性。我们通过在感兴趣区域特征中加入全局语义信息来学习更好的感兴趣区域特征。特别设计了一种新颖的双封头,通过保留空间和通道信息来增强最终特征。对于管道,我们介绍了检测器框架、主干、随机加权平均、伪标签和加权盒融合。实验结果表明,该方法可以获得较好的目标检测平均精度(mAP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generative Cooperative Network for Person Image Generation Image Caption Enhancement with GRIT, Portable ResNet and BART Context-Tuning Dynamical Simulation Study of Hybrid Solar-Fossil Fuel Thermochemical Storage and Electricity, Heat and Cold Generation System Bag of Tricks for “Vision Meet Alage” Object Detection Challenge Density Functional Theory Study of Adding Ionic Liquid to Aqueous Ammonia System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1