{"title":"A Multi-Input Boosting Inverter For PV Applications","authors":"Sangeeta Kumari, N. Sandeep, A. Verma","doi":"10.1109/SeFeT55524.2022.9908851","DOIUrl":null,"url":null,"abstract":"This article presents the nine-level (9L) inverter based on switched-capacitor (SC) concept with inherent voltage boosting. The attractive features of the proposed inverter that, it requires low dc-link voltage due to its quadruple-boosting with reduced component count. The high-voltage gain enable it a single-stage power conversion, which leads to improved power density, efficiency and reliability of the inverter. The proposed 9L inverter is comprised of only one SC and connected in series/parallel to dc input. Hence, SC has self-voltage balancing nature, leads to devoid of dedicated voltage sensors to balance/regulate the voltage across it. Besides, the peak inverse voltage (PIV) of all used power switches is within only twice of the input dc voltage. Further, a simple logic gate based (LGB) pulse width modulation (PWM) scheme is employed to generate the gating singles of switches for 9L operation without using any dedicated control scheme. Additionally, a comprehensive comparison of proposed inverter has been done against existing 9L topologies, describes the merits and feasibility. The performance of the developed inverter is verified through PLECS based simulation.","PeriodicalId":262863,"journal":{"name":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SeFeT55524.2022.9908851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This article presents the nine-level (9L) inverter based on switched-capacitor (SC) concept with inherent voltage boosting. The attractive features of the proposed inverter that, it requires low dc-link voltage due to its quadruple-boosting with reduced component count. The high-voltage gain enable it a single-stage power conversion, which leads to improved power density, efficiency and reliability of the inverter. The proposed 9L inverter is comprised of only one SC and connected in series/parallel to dc input. Hence, SC has self-voltage balancing nature, leads to devoid of dedicated voltage sensors to balance/regulate the voltage across it. Besides, the peak inverse voltage (PIV) of all used power switches is within only twice of the input dc voltage. Further, a simple logic gate based (LGB) pulse width modulation (PWM) scheme is employed to generate the gating singles of switches for 9L operation without using any dedicated control scheme. Additionally, a comprehensive comparison of proposed inverter has been done against existing 9L topologies, describes the merits and feasibility. The performance of the developed inverter is verified through PLECS based simulation.