System identification through neuro-fuzzy methodologies

A. Cucè, G. D'Angelo, M. Di Guardo, B. Giacalone, S. Mazzaglia, C. Vinci
{"title":"System identification through neuro-fuzzy methodologies","authors":"A. Cucè, G. D'Angelo, M. Di Guardo, B. Giacalone, S. Mazzaglia, C. Vinci","doi":"10.1109/ISNFS.1996.603830","DOIUrl":null,"url":null,"abstract":"The aim of the present work is to propose a way to identify the behaviour of an induction motor supplied by using a DC/AC converter controlled through a pulse width modulation (PWM) technique. Although a mathematical description of the motor is well-known in literature, the model is sensitive to parameters variations. Moreover it is impossible to modelize in a mathematical way the system composed by the motor and the inverter together. A neuro fuzzy network, trained with a set of I/O measures, it is able to identify the whole system. The results proposed show how the behaviour of the identified system matches the real one.","PeriodicalId":187481,"journal":{"name":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNFS.1996.603830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of the present work is to propose a way to identify the behaviour of an induction motor supplied by using a DC/AC converter controlled through a pulse width modulation (PWM) technique. Although a mathematical description of the motor is well-known in literature, the model is sensitive to parameters variations. Moreover it is impossible to modelize in a mathematical way the system composed by the motor and the inverter together. A neuro fuzzy network, trained with a set of I/O measures, it is able to identify the whole system. The results proposed show how the behaviour of the identified system matches the real one.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过神经模糊方法进行系统辨识
本工作的目的是提出一种方法来识别通过脉冲宽度调制(PWM)技术控制的DC/AC转换器提供的感应电机的行为。虽然电机的数学描述在文献中是众所周知的,但该模型对参数变化很敏感。此外,用数学方法对由电动机和逆变器共同组成的系统进行建模是不可能的。用一组输入输出量训练的神经模糊网络,能够识别整个系统。所提出的结果显示了识别系统的行为如何与实际系统相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance evaluation of time-delay fuzzy neural networks for isolated word recognition System identification through neuro-fuzzy methodologies VLSI complexity of threshold gate COMPARISON Ill-posed problems in electromagnetics: advantages of neuro-fuzzy approaches Dynamics of pattern formation in cellular neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1