Effect of disorder on superfluidity in double layer graphene

B. Dellabetta, M. J. Gilbert
{"title":"Effect of disorder on superfluidity in double layer graphene","authors":"B. Dellabetta, M. J. Gilbert","doi":"10.1109/DRC.2011.5994465","DOIUrl":null,"url":null,"abstract":"Post-CMOS logic in bilayer graphene is very promising due to the possibility of observing room temperature collective states. An excitonic superfluid is predicted to form in double layer graphene systems at room temperature if the two individual monolayers of graphene are separated by an oxide no more than a few nanometers thick [1]. Recent experiments have shown evidence of interaction enhanced transport in double layer graphene [2], but there is a significant discrepancy in the quality of the two graphene layers which may be occluding the phase transition. We present and compare the performance characteristics of ideal and disordered double layer graphene systems at room temperature in the purported regime of superfluidity. We perform quantum transport calculations on double layer graphene using the Non-Equilibrium Green's Function (NEGF) formalism in an effort to elucidate the evolution of a BEC under non-equilibrium conditions in the presence of lattice defects. We find that lattice defects spread throughout the channel can degrade interlayer current by 30%, but disorder concentrated near the contacts causes a much more significant reduction of 80% in interlayer current. We also find that steady-state spontaneous coherence is lost for defect concentrations greater than 4%; a very clean system is therefore necessary for potential post-CMOS logic applications.","PeriodicalId":107059,"journal":{"name":"69th Device Research Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"69th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2011.5994465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Post-CMOS logic in bilayer graphene is very promising due to the possibility of observing room temperature collective states. An excitonic superfluid is predicted to form in double layer graphene systems at room temperature if the two individual monolayers of graphene are separated by an oxide no more than a few nanometers thick [1]. Recent experiments have shown evidence of interaction enhanced transport in double layer graphene [2], but there is a significant discrepancy in the quality of the two graphene layers which may be occluding the phase transition. We present and compare the performance characteristics of ideal and disordered double layer graphene systems at room temperature in the purported regime of superfluidity. We perform quantum transport calculations on double layer graphene using the Non-Equilibrium Green's Function (NEGF) formalism in an effort to elucidate the evolution of a BEC under non-equilibrium conditions in the presence of lattice defects. We find that lattice defects spread throughout the channel can degrade interlayer current by 30%, but disorder concentrated near the contacts causes a much more significant reduction of 80% in interlayer current. We also find that steady-state spontaneous coherence is lost for defect concentrations greater than 4%; a very clean system is therefore necessary for potential post-CMOS logic applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无序对双层石墨烯超流动性的影响
双层石墨烯中的后cmos逻辑非常有前途,因为可以观察室温集体状态。据预测,如果两层单层石墨烯被厚度不超过几纳米的氧化物隔开,则在室温下双层石墨烯体系中会形成激子超流体[1]。最近的实验表明,相互作用增强了双层石墨烯中的输运[2],但两层石墨烯的质量存在显著差异,这可能会阻碍相变。我们提出并比较了理想和无序双层石墨烯系统在室温下超流体状态下的性能特征。我们使用非平衡格林函数(NEGF)形式对双层石墨烯进行量子输运计算,以阐明存在晶格缺陷的非平衡条件下BEC的演化。我们发现遍布整个通道的晶格缺陷可以使层间电流降低30%,但集中在触点附近的无序会使层间电流降低80%。我们还发现,当缺陷浓度大于4%时,稳态自发相干丢失;因此,一个非常干净的系统对于潜在的后cmos逻辑应用是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical program committee Rump sessions Circuit applications based on solution-processed zinc-tin oxide TFTs 1.0 THz fmax InP DHBTs in a refractory emitter and self-aligned base process for reduced base access resistance Effect of disorder on superfluidity in double layer graphene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1