Air Pollution Prediction using Random Forest Classifier: A Case Study of DKI Jakarta

Richie Muljana, Lintang Diah Ayuningtyas, Rayhan Prawira Daksa, Simen Ferdinand Djamhari, Muhammad Ariiq Fiezayyan, Noviyanti T M Sagala
{"title":"Air Pollution Prediction using Random Forest Classifier: A Case Study of DKI Jakarta","authors":"Richie Muljana, Lintang Diah Ayuningtyas, Rayhan Prawira Daksa, Simen Ferdinand Djamhari, Muhammad Ariiq Fiezayyan, Noviyanti T M Sagala","doi":"10.1109/ICCoSITE57641.2023.10127759","DOIUrl":null,"url":null,"abstract":"This research paper analyzes the Air Pollution Standard Index (APSI) in Jakarta, Indonesia, using the Random Forest Classifier (RFC). The study aims to predict the APSI level in Jakarta based on the concentrations of various pollutants, including particulate matter (PM), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3). The data used in the study was collected from a public website called Jakarta Open Data from January to December 2020. The SMOTE-Tomek technique was used to handle an imbalanced dataset in this work. The results show that the RFC model accurately predicts the APSI level in Jakarta with an accuracy of 95%. In addition, RFC can identify ozone (O3) and particulate matter (PM) are the most critical factors influencing the APSI level. This study provides valuable insights into the factors influencing air pollution in Jakarta and can be used to inform city decision-making regarding air quality management. This paper discusses the finding's significance and potential future research directions.","PeriodicalId":256184,"journal":{"name":"2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCoSITE57641.2023.10127759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This research paper analyzes the Air Pollution Standard Index (APSI) in Jakarta, Indonesia, using the Random Forest Classifier (RFC). The study aims to predict the APSI level in Jakarta based on the concentrations of various pollutants, including particulate matter (PM), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3). The data used in the study was collected from a public website called Jakarta Open Data from January to December 2020. The SMOTE-Tomek technique was used to handle an imbalanced dataset in this work. The results show that the RFC model accurately predicts the APSI level in Jakarta with an accuracy of 95%. In addition, RFC can identify ozone (O3) and particulate matter (PM) are the most critical factors influencing the APSI level. This study provides valuable insights into the factors influencing air pollution in Jakarta and can be used to inform city decision-making regarding air quality management. This paper discusses the finding's significance and potential future research directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机森林分类器的空气污染预测——以雅加达DKI为例
本文采用随机森林分类器(RFC)对印度尼西亚雅加达的空气污染标准指数(APSI)进行了分析。该研究旨在根据各种污染物的浓度预测雅加达的APSI水平,这些污染物包括颗粒物(PM)、二氧化硫(SO2)、二氧化氮(NO2)、一氧化碳(CO)和臭氧(O3)。该研究中使用的数据是从一个名为雅加达开放数据的公共网站上收集的,时间为2020年1月至12月。在这项工作中,使用SMOTE-Tomek技术来处理不平衡数据集。结果表明,RFC模型准确预测雅加达APSI水平,准确率为95%。此外,RFC可以识别臭氧(O3)和颗粒物(PM)是影响APSI水平的最关键因素。本研究为雅加达空气污染的影响因素提供了有价值的见解,并可用于为城市空气质量管理决策提供信息。本文讨论了这一发现的意义和潜在的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Customer Relationship Management, Customer Retention, and the Mediating Role of Customer Satisfaction on a Healthcare Mobile Applications Revalidating the Encoder-Decoder Depths and Activation Function to Find Optimum Vanilla Transformer Model Goertzel Algorithm Design on Field Programmable Gate Arrays For Implementing Electric Power Measurement Instagram vs TikTok: Which Engage Best for Consumer Brand Engagement for Social Commerce and Purchase Intention? Air Pollution Prediction using Random Forest Classifier: A Case Study of DKI Jakarta
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1