S. Saini, Dale Talcott, D. Jespersen, M. J. Djomehri, Haoqiang Jin, R. Biswas
{"title":"Scientific application-based performance comparison of SGI Altix 4700, IBM POWER5+, and SGI ICE 8200 supercomputers","authors":"S. Saini, Dale Talcott, D. Jespersen, M. J. Djomehri, Haoqiang Jin, R. Biswas","doi":"10.1145/1413370.1413378","DOIUrl":null,"url":null,"abstract":"The suitability of next-generation high-performance computing systems for petascale simulations will depend on various performance factors attributable to processor, memory, local and global network, and input/output characteristics. In this paper, we evaluate performance of new dual-core SGI Altix 4700, quad-core SGI Altix ICE 8200, and dual-core IBM POWER5+ systems. To measure performance, we used micro-benchmarks from High Performance Computing Challenge (HPCC), NAS Parallel Benchmarks (NPB), and four real-world applications- three from computational fluid dynamics (CFD) and one from climate modeling. We used the micro-benchmarks to develop a controlled understanding of individual system components, then analyzed and interpreted performance of the NPBs and applications. We also explored the hybrid programming model (MPI+OpenMP) using multi-zone NPBs and the CFD application OVERFLOW-2. Achievable application performance is compared across the systems. For the ICE platform, we also investigated the effect of memory bandwidth on performance by testing 1, 2, 4, and 8 cores per node.","PeriodicalId":230761,"journal":{"name":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1413370.1413378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
The suitability of next-generation high-performance computing systems for petascale simulations will depend on various performance factors attributable to processor, memory, local and global network, and input/output characteristics. In this paper, we evaluate performance of new dual-core SGI Altix 4700, quad-core SGI Altix ICE 8200, and dual-core IBM POWER5+ systems. To measure performance, we used micro-benchmarks from High Performance Computing Challenge (HPCC), NAS Parallel Benchmarks (NPB), and four real-world applications- three from computational fluid dynamics (CFD) and one from climate modeling. We used the micro-benchmarks to develop a controlled understanding of individual system components, then analyzed and interpreted performance of the NPBs and applications. We also explored the hybrid programming model (MPI+OpenMP) using multi-zone NPBs and the CFD application OVERFLOW-2. Achievable application performance is compared across the systems. For the ICE platform, we also investigated the effect of memory bandwidth on performance by testing 1, 2, 4, and 8 cores per node.