D. B. Larkins, James Dinan, S. Krishnamoorthy, S. Parthasarathy, A. Rountev, P. Sadayappan
{"title":"Global Trees: A framework for linked data structures on distributed memory parallel systems","authors":"D. B. Larkins, James Dinan, S. Krishnamoorthy, S. Parthasarathy, A. Rountev, P. Sadayappan","doi":"10.5555/1413370.1413428","DOIUrl":null,"url":null,"abstract":"This paper describes the Global Trees (GT) system that provides a multi-layered interface to a global address space view of distributed tree data structures, while providing scalable performance on distributed memory systems. The Global Trees system utilizes coarse-grained data movement to enhance locality and communication efficiency. We describe the design and implementation of GT, illustrate its use in the context of a gravitational simulation application, and provide experimental results that demonstrate the effectiveness of the approach. The key benefits of using this system include efficient shared-memory style programming of distributed trees, tree-specific optimizations for data access and computation, and the ability to customize many aspects of GT to optimize application performance.","PeriodicalId":230761,"journal":{"name":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1413370.1413428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
This paper describes the Global Trees (GT) system that provides a multi-layered interface to a global address space view of distributed tree data structures, while providing scalable performance on distributed memory systems. The Global Trees system utilizes coarse-grained data movement to enhance locality and communication efficiency. We describe the design and implementation of GT, illustrate its use in the context of a gravitational simulation application, and provide experimental results that demonstrate the effectiveness of the approach. The key benefits of using this system include efficient shared-memory style programming of distributed trees, tree-specific optimizations for data access and computation, and the ability to customize many aspects of GT to optimize application performance.