YOLOv3 based Real Time Social Distance Violation Detection in Public Places

Chandrika Acharjee, Sumanta Deb
{"title":"YOLOv3 based Real Time Social Distance Violation Detection in Public Places","authors":"Chandrika Acharjee, Sumanta Deb","doi":"10.1109/ComPE53109.2021.9752229","DOIUrl":null,"url":null,"abstract":"The prevalent COVID 19 pandemic is incessantly taking toll on the lives of people throughout the world. Moreover, the dearth of effectual remedies has caused an expeditious rise in the total COVID 19 cases. Though vaccines have been developed, the enormous task of vaccinating a large population is still challenging. Also, as new variants emanate, the resilience from infections conceivably decreases. Hence, it’s most unlikely that we’ll achieve herd immunity globally so soon. Thus, since the transmission of COVID causing coronavirus roots mainly to social proximity between people, it is necessary to stringently comply to the non pharmaceutical preventive measures of wearing masks and maintaining physical distancing. Howbeit, it has evidently been found that people are being lethargically ignorant to the social distancing norms with passing time. Hence, an autonomous mechanism intended at social distancing violation detection through monitoring of people is needed to be introduced at an authority level. In this paper, the implementation of YOLO Object detection transfer learning process has been used for accomplishing this aim of real time detection of social distancing violation. Our social distance prediction approach uses a pre-trained YOLOv3 object tracking algorithm for identifying people in an input video stream. A Distance estimation algorithm is further used, that works by computing euclidean distance between the centroids of each pair of detected people. This approach highlights the people violating the social distancing criteria as well as calculates the number of times social distancing gets violated as any two people get closer than a set threshold value of minimum permissible distance. A number of experiments on various pre-recorded video streams has been conducted in order to estimate the viability of this method. Through experimental outcomes, it has been found that this YOLO based object detection method with the proposed social distance prediction algorithm produces favourable results for tracking social distancing in public spaces.","PeriodicalId":211704,"journal":{"name":"2021 International Conference on Computational Performance Evaluation (ComPE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Performance Evaluation (ComPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComPE53109.2021.9752229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The prevalent COVID 19 pandemic is incessantly taking toll on the lives of people throughout the world. Moreover, the dearth of effectual remedies has caused an expeditious rise in the total COVID 19 cases. Though vaccines have been developed, the enormous task of vaccinating a large population is still challenging. Also, as new variants emanate, the resilience from infections conceivably decreases. Hence, it’s most unlikely that we’ll achieve herd immunity globally so soon. Thus, since the transmission of COVID causing coronavirus roots mainly to social proximity between people, it is necessary to stringently comply to the non pharmaceutical preventive measures of wearing masks and maintaining physical distancing. Howbeit, it has evidently been found that people are being lethargically ignorant to the social distancing norms with passing time. Hence, an autonomous mechanism intended at social distancing violation detection through monitoring of people is needed to be introduced at an authority level. In this paper, the implementation of YOLO Object detection transfer learning process has been used for accomplishing this aim of real time detection of social distancing violation. Our social distance prediction approach uses a pre-trained YOLOv3 object tracking algorithm for identifying people in an input video stream. A Distance estimation algorithm is further used, that works by computing euclidean distance between the centroids of each pair of detected people. This approach highlights the people violating the social distancing criteria as well as calculates the number of times social distancing gets violated as any two people get closer than a set threshold value of minimum permissible distance. A number of experiments on various pre-recorded video streams has been conducted in order to estimate the viability of this method. Through experimental outcomes, it has been found that this YOLO based object detection method with the proposed social distance prediction algorithm produces favourable results for tracking social distancing in public spaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于YOLOv3的公共场所社交距离违规实时检测
2019冠状病毒病(COVID - 19)大流行正在不断夺走全世界人民的生命。此外,由于缺乏有效的补救措施,COVID - 19病例总数迅速上升。尽管疫苗已经开发出来,但为大量人口接种疫苗的艰巨任务仍然具有挑战性。此外,随着新的变种的出现,感染的恢复力可想而知会下降。因此,我们不太可能这么快就在全球范围内实现群体免疫。因此,由于新冠病毒的传播主要源于人与人之间的社交接触,因此有必要严格遵守佩戴口罩和保持身体距离等非药物预防措施。然而,随着时间的推移,人们显然对保持社交距离的规范漠不关心。因此,有必要在当局层面引入通过监视人员来检测社交距离违规行为的自主机制。本文通过实施YOLO对象检测迁移学习过程来实现实时检测社交距离违规行为的目的。我们的社交距离预测方法使用预训练的YOLOv3对象跟踪算法来识别输入视频流中的人。进一步使用了距离估计算法,该算法通过计算每对被检测人的质心之间的欧氏距离来工作。该方法突出显示违反社交距离标准的人,并计算任何两个人的距离超过设定的最小允许距离阈值时违反社交距离的次数。在各种预录制的视频流上进行了一些实验,以估计该方法的可行性。通过实验结果发现,这种基于YOLO的目标检测方法与所提出的社会距离预测算法在公共空间的社会距离跟踪方面取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iSIMP with Integrity Validation using MD5 Hash A Fault Detection Scheme for IoT-enabled WSNs YOLOv3 based Real Time Social Distance Violation Detection in Public Places Finite Element Analysis of Femur Bone under Different Loading Conditions An Efficient and Anonymous Authentication Key Agreement Protocol for Smart Transportation System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1