{"title":"Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering","authors":"Jinlan Fu, Yi Li, Qi Zhang, Qinzhuo Wu, Renfeng Ma, Xuanjing Huang, Yu-Gang Jiang","doi":"10.1145/3336191.3371817","DOIUrl":null,"url":null,"abstract":"Expert finding is a task designed to enable recommendation of the right person who can provide high-quality answers to a requester's question. Most previous works try to involve a content-based recommendation, which only superficially comprehends the relevance between a requester's question and the expertise of candidate experts by exploring the content or topic similarity between the requester's question and the candidate experts' historical answers. However, if a candidate expert has never answered a question similar to the requester's question, then existing methods have difficulty making a correct recommendation. Therefore, exploring the implicit relevance between a requester's question and a candidate expert's historical records by perception and reasoning should be taken into consideration. In this study, we propose a novel \\textslrecurrent memory reasoning network (RMRN) to perform this task. This method focuses on different parts of a question, and accordingly retrieves information from the histories of the candidate expert.Since only a small percentage of historical records are relevant to any requester's question, we introduce a Gumbel-Softmax-based mechanism to select relevant historical records from candidate experts' answering histories. To evaluate the proposed method, we constructed two large-scale datasets drawn from Stack Overflow and Yahoo! Answer. Experimental results on the constructed datasets demonstrate that the proposed method could achieve better performance than existing state-of-the-art methods.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Expert finding is a task designed to enable recommendation of the right person who can provide high-quality answers to a requester's question. Most previous works try to involve a content-based recommendation, which only superficially comprehends the relevance between a requester's question and the expertise of candidate experts by exploring the content or topic similarity between the requester's question and the candidate experts' historical answers. However, if a candidate expert has never answered a question similar to the requester's question, then existing methods have difficulty making a correct recommendation. Therefore, exploring the implicit relevance between a requester's question and a candidate expert's historical records by perception and reasoning should be taken into consideration. In this study, we propose a novel \textslrecurrent memory reasoning network (RMRN) to perform this task. This method focuses on different parts of a question, and accordingly retrieves information from the histories of the candidate expert.Since only a small percentage of historical records are relevant to any requester's question, we introduce a Gumbel-Softmax-based mechanism to select relevant historical records from candidate experts' answering histories. To evaluate the proposed method, we constructed two large-scale datasets drawn from Stack Overflow and Yahoo! Answer. Experimental results on the constructed datasets demonstrate that the proposed method could achieve better performance than existing state-of-the-art methods.