LouvainNE

Ayan Kumar Bhowmick, Koushik Meneni, Maximilien Danisch, J. Guillaume, Bivas Mitra
{"title":"LouvainNE","authors":"Ayan Kumar Bhowmick, Koushik Meneni, Maximilien Danisch, J. Guillaume, Bivas Mitra","doi":"10.1145/3336191.3371800","DOIUrl":null,"url":null,"abstract":"Network embedding, that aims to learn low-dimensional vector representation of nodes such that the network structure is preserved, has gained significant research attention in recent years. However, most state-of-the-art network embedding methods are computationally expensive and hence unsuitable for representing nodes in billion-scale networks. In this paper, we present LouvainNE, a hierarchical clustering approach to network embedding. Precisely, we employ Louvain, an extremely fast and accurate community detection method, to build a hierarchy of successively smaller subgraphs. We obtain representations of individual nodes in the original graph at different levels of the hierarchy, then we aggregate these representations to learn the final embedding vectors. Our theoretical analysis shows that our proposed algorithm has quasi-linear run-time and memory complexity. Our extensive experimental evaluation, carried out on multiple real-world networks of different scales, demonstrates both (i) the scalability of our proposed approach that can handle graphs containing tens of billions of edges, as well as (ii) its effectiveness in performing downstream network mining tasks such as network reconstruction and node classification.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Network embedding, that aims to learn low-dimensional vector representation of nodes such that the network structure is preserved, has gained significant research attention in recent years. However, most state-of-the-art network embedding methods are computationally expensive and hence unsuitable for representing nodes in billion-scale networks. In this paper, we present LouvainNE, a hierarchical clustering approach to network embedding. Precisely, we employ Louvain, an extremely fast and accurate community detection method, to build a hierarchy of successively smaller subgraphs. We obtain representations of individual nodes in the original graph at different levels of the hierarchy, then we aggregate these representations to learn the final embedding vectors. Our theoretical analysis shows that our proposed algorithm has quasi-linear run-time and memory complexity. Our extensive experimental evaluation, carried out on multiple real-world networks of different scales, demonstrates both (i) the scalability of our proposed approach that can handle graphs containing tens of billions of edges, as well as (ii) its effectiveness in performing downstream network mining tasks such as network reconstruction and node classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering Joint Recognition of Names and Publications in Academic Homepages LouvainNE Enhancing Re-finding Behavior with External Memories for Personalized Search Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1