Bayesian regularized nonnegative matrix factorization based face features learning

Xueyi Zhao
{"title":"Bayesian regularized nonnegative matrix factorization based face features learning","authors":"Xueyi Zhao","doi":"10.1109/IPTA.2010.5586732","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel technique for learning face features based on Bayesian regularized non-negative matrix factorization with Itakura-Saito (IS) divergence (B-NMF). In this paper, we show, the proposed technique not only explicitly incorporates the notion of ‘Bayesian regularized prior’ which imposes onto the features learning but also holds the property of scale invariant that enables lower energy components in the learning process to be treated with equal importance as the high energy components. Real test has been conducted and the obtained results are very encouraging.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel technique for learning face features based on Bayesian regularized non-negative matrix factorization with Itakura-Saito (IS) divergence (B-NMF). In this paper, we show, the proposed technique not only explicitly incorporates the notion of ‘Bayesian regularized prior’ which imposes onto the features learning but also holds the property of scale invariant that enables lower energy components in the learning process to be treated with equal importance as the high energy components. Real test has been conducted and the obtained results are very encouraging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯正则化非负矩阵分解的人脸特征学习
提出了一种基于Itakura-Saito (IS)散度(B-NMF)的贝叶斯正则化非负矩阵分解人脸特征学习方法。在本文中,我们表明,所提出的技术不仅明确地结合了“贝叶斯正则化先验”的概念,该概念施加于特征学习,而且还具有尺度不变性,使得学习过程中的低能量分量与高能分量同等重要。已进行了实际试验,取得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Audio-video surveillance system for public transportation Bayesian regularized nonnegative matrix factorization based face features learning Co-parent selection for fast region merging in pyramidal image segmentation Temporal error concealment algorithm for H.264/AVC using omnidirectional motion similarity Measurement of laboratory fire spread experiments by stereovision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1