Temporal error concealment algorithm for H.264/AVC using omnidirectional motion similarity

Changki Min, S. Jin, Hyeongchul Oh, Sang-Jun Park, Jechang Jeong
{"title":"Temporal error concealment algorithm for H.264/AVC using omnidirectional motion similarity","authors":"Changki Min, S. Jin, Hyeongchul Oh, Sang-Jun Park, Jechang Jeong","doi":"10.1109/IPTA.2010.5586725","DOIUrl":null,"url":null,"abstract":"H.264/AVC is the newest one among several video compression standards. The main goals of H.264/AVC are to achieve efficient compression performance and a network friendly video coding. However, if an error occurs when transmitting compressed video, error concealment is needed to prevent error propagation and to improve the video quality. In this paper, we propose the temporal error concealment algorithm which provides high performance for H.264/AVC. The proposed algorithm uses the property that the motion vectors (MVs) between the error macroblock (MB) and the neighboring MB have high similarity to select a group of candidate MVs, when an error occurs in the inter-coded frame. Next, weighted overlapped boundary matching algorithm using the credibility of information selects the best candidate MV among a group of candidate MVs. The experimental results show that the proposed algorithm improves PSNR up to 3.02 dB compared with the boundary matching algorithm (BMA).","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

H.264/AVC is the newest one among several video compression standards. The main goals of H.264/AVC are to achieve efficient compression performance and a network friendly video coding. However, if an error occurs when transmitting compressed video, error concealment is needed to prevent error propagation and to improve the video quality. In this paper, we propose the temporal error concealment algorithm which provides high performance for H.264/AVC. The proposed algorithm uses the property that the motion vectors (MVs) between the error macroblock (MB) and the neighboring MB have high similarity to select a group of candidate MVs, when an error occurs in the inter-coded frame. Next, weighted overlapped boundary matching algorithm using the credibility of information selects the best candidate MV among a group of candidate MVs. The experimental results show that the proposed algorithm improves PSNR up to 3.02 dB compared with the boundary matching algorithm (BMA).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于全向运动相似度的H.264/AVC时间误差隐藏算法
H.264/AVC是目前最新的视频压缩标准。H.264/AVC的主要目标是实现高效的压缩性能和网络友好的视频编码。但是,当压缩视频在传输过程中出现错误时,为了防止错误传播,提高视频质量,需要进行错误隐藏。本文提出了一种能够为H.264/AVC提供高性能的时间误差隐藏算法。该算法利用错误宏块(MB)与相邻宏块(MB)之间运动向量相似性高的特性,在码间帧发生错误时选择一组候选宏块。其次,利用信息可信度加权重叠边界匹配算法从一组候选MV中选择最佳候选MV;实验结果表明,与边界匹配算法(BMA)相比,该算法可将PSNR提高到3.02 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Audio-video surveillance system for public transportation Bayesian regularized nonnegative matrix factorization based face features learning Co-parent selection for fast region merging in pyramidal image segmentation Temporal error concealment algorithm for H.264/AVC using omnidirectional motion similarity Measurement of laboratory fire spread experiments by stereovision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1