A Signal-Size Estimator Based on Correlation-Dimension For Auditory Signals

Marco William Langi, K. Mutijarsa, Y. Bandung, A. Langi
{"title":"A Signal-Size Estimator Based on Correlation-Dimension For Auditory Signals","authors":"Marco William Langi, K. Mutijarsa, Y. Bandung, A. Langi","doi":"10.1109/ICISS53185.2021.9533240","DOIUrl":null,"url":null,"abstract":"This paper presents an estimator of fractal signal sizes based on correlation fractal dimension as applied to auditory signals. Correlation fractal dimension has been proposed for characterization of signals coming from chaotic sources. Practical estimations are made possible using a Takens algorithm, producing different estimates in each embedding dimension. The estimator consists of four processes: (i) signal measures creation, (ii) covering-counting, (iii) critical-exponent estimation, and (iv) size calculation. We study the resulting estimates of controlled signals to validate the estimator as well as to come up with a calibration scheme. The paper further discusses a possible application of fractal sizes to characterize coughs to identify the presense of respiratory diseases, such as in Covid-19 pre-screening.","PeriodicalId":220371,"journal":{"name":"2021 International Conference on ICT for Smart Society (ICISS)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on ICT for Smart Society (ICISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISS53185.2021.9533240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an estimator of fractal signal sizes based on correlation fractal dimension as applied to auditory signals. Correlation fractal dimension has been proposed for characterization of signals coming from chaotic sources. Practical estimations are made possible using a Takens algorithm, producing different estimates in each embedding dimension. The estimator consists of four processes: (i) signal measures creation, (ii) covering-counting, (iii) critical-exponent estimation, and (iv) size calculation. We study the resulting estimates of controlled signals to validate the estimator as well as to come up with a calibration scheme. The paper further discusses a possible application of fractal sizes to characterize coughs to identify the presense of respiratory diseases, such as in Covid-19 pre-screening.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相关维数的听觉信号大小估计方法
本文提出了一种基于相关分形维数的分形信号大小估计方法,并应用于听觉信号。相关分形维数被用来表征来自混沌源的信号。使用Takens算法使实际估计成为可能,在每个嵌入维度中产生不同的估计。估计器由四个过程组成:(i)信号测量创建,(ii)覆盖计数,(iii)关键指数估计和(iv)大小计算。我们研究了控制信号的结果估计来验证估计器,并提出了一个校准方案。本文进一步讨论了分形大小在表征咳嗽以识别呼吸道疾病存在的可能应用,例如在Covid-19预筛查中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eye Movement Detection using Histogram Oriented Gradient and K-Nearest Neighbors Optimized Gaussian Process Regression by Bayesian Optimization to Forecast COVID-19 Spread in India and Brazil: A Comparative Study ICISS 2021 Cover Page Interview Bot for Improving Human Resource Management A Signal-Size Estimator Based on Correlation-Dimension For Auditory Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1