{"title":"Reusing 60GHz Radios for Mobile Radar Imaging","authors":"Yanzi Zhu, Yibo Zhu, Ben Y. Zhao, Haitao Zheng","doi":"10.1145/2789168.2790112","DOIUrl":null,"url":null,"abstract":"The future of mobile computing involves autonomous drones, robots and vehicles. To accurately sense their surroundings in a variety of scenarios, these mobile computers require a robust environmental mapping system. One attractive approach is to reuse millimeterwave communication hardware in these devices, e.g. 60GHz networking chipset, and capture signals reflected by the target surface. The devices can also move while collecting reflection signals, creating a large synthetic aperture radar (SAR) for high-precision RF imaging. Our experimental measurements, however, show that this approach provides poor precision in practice, as imaging results are highly sensitive to device positioning errors that translate into phase errors. We address this challenge by proposing a new 60GHz imaging algorithm, {\\em RSS Series Analysis}, which images an object using only RSS measurements recorded along the device's trajectory. In addition to object location, our algorithm can discover a rich set of object surface properties at high precision, including object surface orientation, curvature, boundaries, and surface material. We tested our system on a variety of common household objects (between 5cm--30cm in width). Results show that it achieves high accuracy (cm level) in a variety of dimensions, and is highly robust against noises in device position and trajectory tracking. We believe that this is the first practical mobile imaging system (re)using 60GHz networking devices, and provides a basic primitive towards the construction of detailed environmental mapping systems.","PeriodicalId":424497,"journal":{"name":"Proceedings of the 21st Annual International Conference on Mobile Computing and Networking","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"126","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2789168.2790112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 126
Abstract
The future of mobile computing involves autonomous drones, robots and vehicles. To accurately sense their surroundings in a variety of scenarios, these mobile computers require a robust environmental mapping system. One attractive approach is to reuse millimeterwave communication hardware in these devices, e.g. 60GHz networking chipset, and capture signals reflected by the target surface. The devices can also move while collecting reflection signals, creating a large synthetic aperture radar (SAR) for high-precision RF imaging. Our experimental measurements, however, show that this approach provides poor precision in practice, as imaging results are highly sensitive to device positioning errors that translate into phase errors. We address this challenge by proposing a new 60GHz imaging algorithm, {\em RSS Series Analysis}, which images an object using only RSS measurements recorded along the device's trajectory. In addition to object location, our algorithm can discover a rich set of object surface properties at high precision, including object surface orientation, curvature, boundaries, and surface material. We tested our system on a variety of common household objects (between 5cm--30cm in width). Results show that it achieves high accuracy (cm level) in a variety of dimensions, and is highly robust against noises in device position and trajectory tracking. We believe that this is the first practical mobile imaging system (re)using 60GHz networking devices, and provides a basic primitive towards the construction of detailed environmental mapping systems.