R. Kruzelecky, B. Wong, Jing Zou, E. Haddad, W. Jamroz, A. Yelon, R. Beaudry, O. Grenier, Wanping Zheng, L. Phong
{"title":"Advanced MEMS and Integrated-Optic Components for Multifunctional Integrated Optical Micromachines","authors":"R. Kruzelecky, B. Wong, Jing Zou, E. Haddad, W. Jamroz, A. Yelon, R. Beaudry, O. Grenier, Wanping Zheng, L. Phong","doi":"10.1109/ICMENS.2004.27","DOIUrl":null,"url":null,"abstract":"Optical technologies can play a strategic role in improving the performance, functionality, and reducing the mass of various spacecraft technologies, such as true time-delay T/R modules for phased-array antennas and optical sensor systems for satellite navigation and systems status. However, current photonic and fiber-optic systems tend to be bulky relative to the requirements for space applications. Micro integrated-optic circuits increase the integration of optical components on a single substrate, to provide multi-function optical processing and switching similar to electronic integrated circuits. This minimizes the number of external optical interconnections required and sensitivity to external vibrations; maximizing the system information capacity, optical throughput, and reliability, while minimizing the overall system size and weight. This paper considers a systematic development of MEMS integrated-optic circuits on SOI for various space application. A unique blend of MEMS, smart-material and photonic technologies is employed to miniaturize the size of the basic components, while improving on the attainable performance.","PeriodicalId":344661,"journal":{"name":"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMENS.2004.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Optical technologies can play a strategic role in improving the performance, functionality, and reducing the mass of various spacecraft technologies, such as true time-delay T/R modules for phased-array antennas and optical sensor systems for satellite navigation and systems status. However, current photonic and fiber-optic systems tend to be bulky relative to the requirements for space applications. Micro integrated-optic circuits increase the integration of optical components on a single substrate, to provide multi-function optical processing and switching similar to electronic integrated circuits. This minimizes the number of external optical interconnections required and sensitivity to external vibrations; maximizing the system information capacity, optical throughput, and reliability, while minimizing the overall system size and weight. This paper considers a systematic development of MEMS integrated-optic circuits on SOI for various space application. A unique blend of MEMS, smart-material and photonic technologies is employed to miniaturize the size of the basic components, while improving on the attainable performance.