Beyond Value Perturbation: Local Differential Privacy in the Temporal Setting

Qingqing Ye, Haibo Hu, Ninghui Li, Xiaofeng Meng, Huadi Zheng, Haotian Yan
{"title":"Beyond Value Perturbation: Local Differential Privacy in the Temporal Setting","authors":"Qingqing Ye, Haibo Hu, Ninghui Li, Xiaofeng Meng, Huadi Zheng, Haotian Yan","doi":"10.1109/INFOCOM42981.2021.9488899","DOIUrl":null,"url":null,"abstract":"Time series has numerous application scenarios. However, since many time series data are personal data, releasing them directly could cause privacy infringement. All existing techniques to publish privacy-preserving time series perturb the values while retaining the original temporal order. However, in many value-critical scenarios such as health and financial time series, the values must not be perturbed whereas the temporal order can be perturbed to protect privacy. As such, we propose \"local differential privacy in the temporal setting\" (TLDP) as the privacy notion for time series data. After quantifying the utility of a temporal perturbation mechanism in terms of the costs of a missing, repeated, empty, or delayed value, we propose three mechanisms for TLDP. Through both analytical and empirical studies, we show the last one, Threshold mechanism, is the most effective under most privacy budget settings, whereas the other two baseline mechanisms fill a niche by supporting very small or large privacy budgets.","PeriodicalId":293079,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM42981.2021.9488899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Time series has numerous application scenarios. However, since many time series data are personal data, releasing them directly could cause privacy infringement. All existing techniques to publish privacy-preserving time series perturb the values while retaining the original temporal order. However, in many value-critical scenarios such as health and financial time series, the values must not be perturbed whereas the temporal order can be perturbed to protect privacy. As such, we propose "local differential privacy in the temporal setting" (TLDP) as the privacy notion for time series data. After quantifying the utility of a temporal perturbation mechanism in terms of the costs of a missing, repeated, empty, or delayed value, we propose three mechanisms for TLDP. Through both analytical and empirical studies, we show the last one, Threshold mechanism, is the most effective under most privacy budget settings, whereas the other two baseline mechanisms fill a niche by supporting very small or large privacy budgets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超越价值扰动:时间背景下的局部差分隐私
时间序列有许多应用场景。然而,由于许多时间序列数据属于个人数据,直接发布可能会造成隐私侵犯。所有现有的发布隐私保护时间序列的技术在保持原始时间顺序的同时对值进行扰动。然而,在许多对价值至关重要的场景中,如健康和金融时间序列中,值不能被扰动,而时间顺序可以被扰动以保护隐私。因此,我们提出了“时间设置中的局部差分隐私”(TLDP)作为时间序列数据的隐私概念。在根据缺失、重复、空或延迟值的成本量化时间扰动机制的效用后,我们提出了TLDP的三种机制。通过分析和实证研究,我们发现最后一种阈值机制在大多数隐私预算设置下是最有效的,而其他两种基线机制通过支持很小或很大的隐私预算来填补空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the TPC Chairs Enabling Edge-Cloud Video Analytics for Robotics Applications Practical Analysis of Replication-Based Systems Towards Minimum Fleet for Ridesharing-Aware Mobility-on-Demand Systems Beyond Value Perturbation: Local Differential Privacy in the Temporal Setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1