Identification of ARX Hammerstein Models based on Twin Support Vector Machine Regression

M. Aldhaifallah, K. Nisar
{"title":"Identification of ARX Hammerstein Models based on Twin Support Vector Machine Regression","authors":"M. Aldhaifallah, K. Nisar","doi":"10.1109/SSD.2016.7473657","DOIUrl":null,"url":null,"abstract":"In this paper we develop a new algorithm to identify Auto-Regressive Exogenous (ARX) input Hammerstein Models based on Twin Support Vector Machine Regression (TSVR). The model is determined by minimizing two ε-insensitive loss functions. One of them determines the ε1-insensitive down bound regressor while the other determines the ε1-insensitive up bound regressor. The algorithm is compared to Support Vector Machine (SVM) and Least Square Support Vector Machine (LSSVM) based algorithms using simulation.","PeriodicalId":149580,"journal":{"name":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2016.7473657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we develop a new algorithm to identify Auto-Regressive Exogenous (ARX) input Hammerstein Models based on Twin Support Vector Machine Regression (TSVR). The model is determined by minimizing two ε-insensitive loss functions. One of them determines the ε1-insensitive down bound regressor while the other determines the ε1-insensitive up bound regressor. The algorithm is compared to Support Vector Machine (SVM) and Least Square Support Vector Machine (LSSVM) based algorithms using simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双支持向量机回归的ARX Hammerstein模型辨识
本文提出了一种基于双支持向量机回归(TSVR)的自回归外生(ARX)输入Hammerstein模型识别算法。该模型通过最小化两个ε-不敏感损失函数来确定。其中一个决定ε1不敏感的下界回归量,而另一个决定ε1不敏感的上界回归量。通过仿真将该算法与基于支持向量机(SVM)和基于最小二乘支持向量机(LSSVM)的算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the distributed mean-variance paradigm Torque calibration with hysteresis brakes Identification of ARX Hammerstein Models based on Twin Support Vector Machine Regression Mean-field-type games on airline networks and airport queues: Braess paradox, its negation, and crowd effect Online policy iteration solution for dynamic graphical games
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1