{"title":"On the distributed mean-variance paradigm","authors":"Alain Tcheukam Siwe, H. Tembine","doi":"10.1109/SSD.2016.7473660","DOIUrl":null,"url":null,"abstract":"In this paper we study the distributed mean-variance paradigm with linear state dynamics of mean-field type in discrete time and several control inputs. The goal is to reduce the variance and the mean of the state in a fully distributed manner. We formulate and explicit solve the problem using recent development of mean-field-type games. We show that there is unique best response strategy to the mean of the state and provide a simple sufficient condition of existence and uniqueness of mean-field equilibrium. We also provide a closed-form expression of the global optimum as a state-and-mean-field feedback strategy.","PeriodicalId":149580,"journal":{"name":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2016.7473660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper we study the distributed mean-variance paradigm with linear state dynamics of mean-field type in discrete time and several control inputs. The goal is to reduce the variance and the mean of the state in a fully distributed manner. We formulate and explicit solve the problem using recent development of mean-field-type games. We show that there is unique best response strategy to the mean of the state and provide a simple sufficient condition of existence and uniqueness of mean-field equilibrium. We also provide a closed-form expression of the global optimum as a state-and-mean-field feedback strategy.