DeepASD: Facial Image Analysis for Autism Spectrum Diagnosis via Explainable Artificial Intelligence

Hyebin Kang, Minuk Yang, Geun-Hyeon Kim, Tae-Soo Lee, Seung Park
{"title":"DeepASD: Facial Image Analysis for Autism Spectrum Diagnosis via Explainable Artificial Intelligence","authors":"Hyebin Kang, Minuk Yang, Geun-Hyeon Kim, Tae-Soo Lee, Seung Park","doi":"10.1109/ICUFN57995.2023.10200203","DOIUrl":null,"url":null,"abstract":"Early and accurate diagnosis of Autism spectrum disorder (ASD) is crucial, but current diagnoses are subjective, time-consuming, and expensive. Recent studies used deep learning for facial images to diagnose ASD. However, the criteria are still unclear. To address these issues, we applied an explainable artificial intelligence technique to four convolutional neural networks (MobileNet, Xception, EfficientNet, and an ensemble model). We utilized gradient-weighted class activation mapping to suggest ASD diagnostic criteria based on facial morphology features. We achieved a high AUROC of 0.89 with the ensemble models. Our study provides objective and easy-to-understand diagnostic methods for early diagnosis of ASD.","PeriodicalId":341881,"journal":{"name":"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN57995.2023.10200203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Early and accurate diagnosis of Autism spectrum disorder (ASD) is crucial, but current diagnoses are subjective, time-consuming, and expensive. Recent studies used deep learning for facial images to diagnose ASD. However, the criteria are still unclear. To address these issues, we applied an explainable artificial intelligence technique to four convolutional neural networks (MobileNet, Xception, EfficientNet, and an ensemble model). We utilized gradient-weighted class activation mapping to suggest ASD diagnostic criteria based on facial morphology features. We achieved a high AUROC of 0.89 with the ensemble models. Our study provides objective and easy-to-understand diagnostic methods for early diagnosis of ASD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepASD:通过可解释的人工智能进行自闭症谱系诊断的面部图像分析
早期和准确的诊断自闭症谱系障碍(ASD)是至关重要的,但目前的诊断是主观的,耗时且昂贵的。最近的研究使用面部图像的深度学习来诊断ASD。然而,标准仍不明确。为了解决这些问题,我们将一种可解释的人工智能技术应用于四个卷积神经网络(MobileNet、Xception、effentnet和一个集成模型)。我们利用梯度加权类激活映射来建议基于面部形态学特征的ASD诊断标准。我们使用集成模型获得了0.89的高AUROC。本研究为ASD的早期诊断提供了客观易懂的诊断方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In Search of Distance Functions That Improve Autoencoder Performance for Intrusion Detection DeepASD: Facial Image Analysis for Autism Spectrum Diagnosis via Explainable Artificial Intelligence Bimodal Speech Emotion Recognition using Fused Intra and Cross Modality Features A Study on Latency Prediction in 5G network Broadcasting in chains of rings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1