Relative Iris Codes

Peeranat Thoonsangngam, S. Thainimit, V. Areekul
{"title":"Relative Iris Codes","authors":"Peeranat Thoonsangngam, S. Thainimit, V. Areekul","doi":"10.1109/ISSPIT.2007.4458113","DOIUrl":null,"url":null,"abstract":"This paper proposes a new scheme to generate iris codes based on relative measure of local iris texture. The local characteristic of iris texture is analyzed using 2D Gabor wavelets. Twelve Gabor kernels, four frequencies and three orientations, are constructed and convoluted with an iris image. To inherit relationship of local iris texture among pixels, Gabor magnitude and phase of a reference pixel is compared with Gabor magnitudes and phases of the other four pixels. These pixels are located away from the reference pixel by 8timesd pixels, where d=1, 2, ..., 4. Each comparison, a 2-bit primitive iris code is generated. Least significant bit of the primitive code describes how Gabor magnitudes of the two pixels are related. This bit is set to '1' if Gabor magnitude of a reference pixel is less than magnitude of the other pixel, otherwise it is set to '0'. Another bit of the 2-bit primitive code describes relative measure of the obtained phase values. This bit is set to '1' if difference of the obtained phases is within plusmnpi/2 , otherwise it is set to '0'. In our scheme, each pixel is described using an 8-bit iris code. Matching between two iris codes is implemented using a look-up table technique. The table contains a number of matches of the primitive code of the two iris codes. By utilizing the look-up table technique, computational time of our 1:1 matching scheme is 2.2 milliseconds. Equal- Error-Rate (EER) of the proposed system using CASIA1.0 iris database is 0.0003%EER","PeriodicalId":299267,"journal":{"name":"2007 IEEE International Symposium on Signal Processing and Information Technology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2007.4458113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a new scheme to generate iris codes based on relative measure of local iris texture. The local characteristic of iris texture is analyzed using 2D Gabor wavelets. Twelve Gabor kernels, four frequencies and three orientations, are constructed and convoluted with an iris image. To inherit relationship of local iris texture among pixels, Gabor magnitude and phase of a reference pixel is compared with Gabor magnitudes and phases of the other four pixels. These pixels are located away from the reference pixel by 8timesd pixels, where d=1, 2, ..., 4. Each comparison, a 2-bit primitive iris code is generated. Least significant bit of the primitive code describes how Gabor magnitudes of the two pixels are related. This bit is set to '1' if Gabor magnitude of a reference pixel is less than magnitude of the other pixel, otherwise it is set to '0'. Another bit of the 2-bit primitive code describes relative measure of the obtained phase values. This bit is set to '1' if difference of the obtained phases is within plusmnpi/2 , otherwise it is set to '0'. In our scheme, each pixel is described using an 8-bit iris code. Matching between two iris codes is implemented using a look-up table technique. The table contains a number of matches of the primitive code of the two iris codes. By utilizing the look-up table technique, computational time of our 1:1 matching scheme is 2.2 milliseconds. Equal- Error-Rate (EER) of the proposed system using CASIA1.0 iris database is 0.0003%EER
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相对虹膜码
本文提出了一种基于局部虹膜纹理相对度量的虹膜编码生成方案。利用二维Gabor小波分析虹膜纹理的局部特征。构建了十二个Gabor核,四个频率和三个方向,并与虹膜图像进行了卷积。为了继承局部虹膜纹理在像素之间的关系,将参考像素的Gabor值和相位与其他四个像素的Gabor值和相位进行比较。这些像素与参考像素相距8倍像素,其中d= 1,2,…4。每次比较,生成一个2位的原始虹膜代码。原始代码的最低有效位描述了两个像素的Gabor值是如何相关的。如果参考像素的Gabor幅度小于其他像素的幅度,则该位设置为“1”,否则设置为“0”。2位原始码的另一位描述了所获得相位值的相对度量。如果获得的相位差在+ usmnpi/2以内,则将该位设置为“1”,否则设置为“0”。在我们的方案中,每个像素使用8位虹膜码来描述。使用查询表技术实现两个虹膜码之间的匹配。该表包含了两个虹膜码的原始码的匹配个数。通过使用查找表技术,1:1匹配方案的计算时间为2.2毫秒。采用CASIA1.0 iris数据库的系统的等错误率(EER)为0.0003
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distribution of a Stochastic Control Algorithm Applied to Gas Storage Valuation Efficient Synthesis of Arbitrary Viewpoint Images Using 3-D Geometric Model and Mesh-Based Specular Reflection Tracing Relative Iris Codes Towards Evaluation of Phonics Method for Teaching of Reading Using Artificial Neural Networks (A Cognitive Modeling Approach) A concept of mathematical methods for the optimization of the post-processing of nuclear resonance spectra of the human skeletal musculature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1