Tracking in decentralised air-ground sensing networks

M. Ridley, E. Nettleton, S. Sukkarieh, Hugh Durrant-Whyte
{"title":"Tracking in decentralised air-ground sensing networks","authors":"M. Ridley, E. Nettleton, S. Sukkarieh, Hugh Durrant-Whyte","doi":"10.1109/ICIF.2002.1021211","DOIUrl":null,"url":null,"abstract":"This paper describes the theoretical and practical development of a decentralised air and ground sensing network for target tracking and identification. The theoretical methods employed for studying decentralised data fusion problems are based on the information-filter formulation of the Kalman filter algorithm and on information-theoretic methods derived from the Bayes theorem. The paper particularly focuses on how these methods are applied in very large heterogeneous sensor networks, where there may be a significant amount of data delay or corruption in communication. This paper then describes the development of a practical system aimed at demonstrating some of these principles. The system consists of a number of unmanned air vehicles (UAVs), with radar and vision payloads, able to observe a number of ground targets. The UAV sensor payloads are constructed in a modular fashion, with the ability to communicate in a network with both other air-borne and other ground sensors. The ground sensor system comprises of multiple modular sensing nodes which include vision scanned laser, steerable radar, multiple fixed radar arrays, and combined night vision (IR)-radar.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

This paper describes the theoretical and practical development of a decentralised air and ground sensing network for target tracking and identification. The theoretical methods employed for studying decentralised data fusion problems are based on the information-filter formulation of the Kalman filter algorithm and on information-theoretic methods derived from the Bayes theorem. The paper particularly focuses on how these methods are applied in very large heterogeneous sensor networks, where there may be a significant amount of data delay or corruption in communication. This paper then describes the development of a practical system aimed at demonstrating some of these principles. The system consists of a number of unmanned air vehicles (UAVs), with radar and vision payloads, able to observe a number of ground targets. The UAV sensor payloads are constructed in a modular fashion, with the ability to communicate in a network with both other air-borne and other ground sensors. The ground sensor system comprises of multiple modular sensing nodes which include vision scanned laser, steerable radar, multiple fixed radar arrays, and combined night vision (IR)-radar.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分散地空传感网络的跟踪
本文描述了一种用于目标跟踪和识别的分散的空中和地面传感网络的理论和实践发展。研究分散数据融合问题的理论方法是基于卡尔曼滤波算法的信息滤波公式和贝叶斯定理衍生的信息理论方法。本文特别关注这些方法如何应用于非常大的异构传感器网络,其中可能存在大量的数据延迟或通信损坏。然后,本文描述了一个实际系统的开发,旨在演示这些原则中的一些。该系统由许多无人驾驶飞行器(uav)组成,具有雷达和视觉有效载荷,能够观察许多地面目标。UAV传感器有效载荷以模块化方式构建,具有与其他机载和其他地面传感器在网络中通信的能力。地面传感器系统由多个模块化传感节点组成,其中包括视觉扫描激光、可操纵雷达、多个固定雷达阵列和组合夜视(IR)雷达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximating fuzzy measures by hierarchically decomposable ones Tracking and fusion for wireless sensor networks A dynamic communication model for loosely coupled hybrid tracking systems On platform-based sensor management An improved Bayes fusion algorithm with the Parzen window method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1