Automated Assertion Generation from Natural Language Specifications

S. Frederiksen, John J. Aromando, M. Hsiao
{"title":"Automated Assertion Generation from Natural Language Specifications","authors":"S. Frederiksen, John J. Aromando, M. Hsiao","doi":"10.1109/ITC44778.2020.9325264","DOIUrl":null,"url":null,"abstract":"We explore contemporary natural language processing (NLP) techniques for converting NL specifications found in design documents directly to an temporal logic-like intermediate representation (IR). Generally, attempts to use NLP for assertion generation have relied on restrictive sentence formats and grammars as well as being difficult to handle new sentence formats. We tackle these issues by first implementing a system that uses commonsense mappings to process input sentences into a normalized form. Then we use frame semantics to convert the normalized sentences into an IR based on the information and context contained in the Frames. Through this we are able to handle a large number of sentences from real datasheets allowing for complex formats using temporal conditions, property statements, and compound statements; all order agnostic. Our system can also be easy extended by modifying an external, rather than internal, commonsense knowledge-base to handle new sentence formats without requiring code changes or intimate knowledge of the algorithms used.","PeriodicalId":251504,"journal":{"name":"2020 IEEE International Test Conference (ITC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC44778.2020.9325264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We explore contemporary natural language processing (NLP) techniques for converting NL specifications found in design documents directly to an temporal logic-like intermediate representation (IR). Generally, attempts to use NLP for assertion generation have relied on restrictive sentence formats and grammars as well as being difficult to handle new sentence formats. We tackle these issues by first implementing a system that uses commonsense mappings to process input sentences into a normalized form. Then we use frame semantics to convert the normalized sentences into an IR based on the information and context contained in the Frames. Through this we are able to handle a large number of sentences from real datasheets allowing for complex formats using temporal conditions, property statements, and compound statements; all order agnostic. Our system can also be easy extended by modifying an external, rather than internal, commonsense knowledge-base to handle new sentence formats without requiring code changes or intimate knowledge of the algorithms used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从自然语言规范自动生成断言
我们探索当代自然语言处理(NLP)技术,用于将设计文档中的NL规范直接转换为类似于时间逻辑的中间表示(IR)。通常,使用NLP进行断言生成的尝试依赖于限制性的句子格式和语法,并且难以处理新的句子格式。为了解决这些问题,我们首先实现了一个系统,该系统使用常识性映射将输入句子处理成规范化的形式。然后根据框架中包含的信息和上下文,使用框架语义将规范化的句子转换成IR。通过这种方式,我们能够处理来自真实数据表的大量句子,允许使用时态条件、属性语句和复合语句的复杂格式;所有顺序都是不可知论的。我们的系统也可以通过修改外部而不是内部的常识性知识库来轻松扩展,以处理新的句子格式,而不需要更改代码或熟悉所使用的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Accuracy of Wideband Power Amplifiers with Memory effects via Measurements Automated Assertion Generation from Natural Language Specifications Characterization, Modeling and Test of Synthetic Anti-Ferromagnet Flip Defect in STT-MRAMs Fast Bring-Up of an AI SoC through IEEE 1687 Integrating Embedded TAPs and IEEE 1500 Interfaces Methods for Susceptibility Analysis of Logic Gates in the Presence of Single Event Transients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1