Advanced soft-error-rate (SER) estimation with striking-time and multi-cycle effects

Ryan H.-M. Huang, Charles H.-P. Wen
{"title":"Advanced soft-error-rate (SER) estimation with striking-time and multi-cycle effects","authors":"Ryan H.-M. Huang, Charles H.-P. Wen","doi":"10.1145/2593069.2593081","DOIUrl":null,"url":null,"abstract":"Soft error rate (SER) has become a critical reliability issue for CMOS designs due to continuous technology scaling. However, the striking-time and multi-cycle effects have not been properly considered in SER for advanced CMOS designs. Therefore, in this paper, the striking-time and multi-cycle effects are formulated into the problem of SER estimation, and then a SER analysis framework is proposed, accordingly. Experimental results show that SERs on the benchmark circuits are seriously underestimated when ignoring both effects. Moreover, SERs increase more on those high-performance or low-power CMOS designs. New treatment to SER needs to be explored in the future.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Soft error rate (SER) has become a critical reliability issue for CMOS designs due to continuous technology scaling. However, the striking-time and multi-cycle effects have not been properly considered in SER for advanced CMOS designs. Therefore, in this paper, the striking-time and multi-cycle effects are formulated into the problem of SER estimation, and then a SER analysis framework is proposed, accordingly. Experimental results show that SERs on the benchmark circuits are seriously underestimated when ignoring both effects. Moreover, SERs increase more on those high-performance or low-power CMOS designs. New treatment to SER needs to be explored in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于打击时间和多周期效应的高级软误码率估计
软误差率(SER)已成为CMOS设计的一个关键的可靠性问题,由于不断的技术规模。然而,在先进的CMOS设计中,在SER中没有适当地考虑打击时间和多周期效应。因此,本文将走时效应和多周期效应纳入到SER估计问题中,并提出了相应的SER分析框架。实验结果表明,当忽略这两种影响时,基准电路上的SERs被严重低估。此外,在那些高性能或低功耗CMOS设计上,SERs增加更多。未来需要探索新的治疗SER的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The EDA challenges in the dark silicon era CAP: Communication aware programming Advanced soft-error-rate (SER) estimation with striking-time and multi-cycle effects State-restrict MLC STT-RAM designs for high-reliable high-performance memory system OD3P: On-Demand Page Paired PCM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1