FIV Energy Harvesting From Sharp-Edge Oscillators

V. Tamimi, M. Armin, S. Shahvaghar-Asl, S. Naeeni, M. Zeinoddini
{"title":"FIV Energy Harvesting From Sharp-Edge Oscillators","authors":"V. Tamimi, M. Armin, S. Shahvaghar-Asl, S. Naeeni, M. Zeinoddini","doi":"10.1115/omae2019-95227","DOIUrl":null,"url":null,"abstract":"\n The relative incompetency of rectangular galloping excavators against conventional circular VIV harvesters is already known. In this experimental study, the hydroelastic energy performances of new right-angle isosceles triangular cylinder against circular, square and diamond cross-sections are investigated. The triangular cylinder displays VIV or galloping type of response in four different symmetrical and unsymmetrical configurations tested. The results show the distinct higher overall galloping energy performance of the triangular cylinder in Config. 2 among other VIV and galloping harvesters. The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is employed to order the remaining tested cross-sections using the averaged and maximum values of the mechanical power and efficiency as criteria. The TOPSIS algorithm shows that the VIV diamond and circular harvesters stay at the second and third places of the energy performance, respectively. The preference value of the diamond and circular cross-sections are almost comparable but are less than half of that in Config. 2. In general, the sharp-edge cylinders display superior energy performance over circular cross-section. However, the axisymmetric circular cylinders, because of their omnidirectional performances, are more efficient in places with the varying flow direction.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The relative incompetency of rectangular galloping excavators against conventional circular VIV harvesters is already known. In this experimental study, the hydroelastic energy performances of new right-angle isosceles triangular cylinder against circular, square and diamond cross-sections are investigated. The triangular cylinder displays VIV or galloping type of response in four different symmetrical and unsymmetrical configurations tested. The results show the distinct higher overall galloping energy performance of the triangular cylinder in Config. 2 among other VIV and galloping harvesters. The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is employed to order the remaining tested cross-sections using the averaged and maximum values of the mechanical power and efficiency as criteria. The TOPSIS algorithm shows that the VIV diamond and circular harvesters stay at the second and third places of the energy performance, respectively. The preference value of the diamond and circular cross-sections are almost comparable but are less than half of that in Config. 2. In general, the sharp-edge cylinders display superior energy performance over circular cross-section. However, the axisymmetric circular cylinders, because of their omnidirectional performances, are more efficient in places with the varying flow direction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锐利边缘振荡器的FIV能量收集
矩形疾驰挖掘机相对于传统的圆形VIV收割机的无能是众所周知的。实验研究了新型直角等腰三角形圆柱体对圆形、方形和菱形截面的水弹性能性能。三角形圆柱体在四种不同的对称和不对称配置中显示出VIV或驰骋型响应。结果表明,配置2中的三角圆柱在其他涡激振动和驰振收割机中具有明显更高的整体驰振能量性能。以机械功率和效率的平均值和最大值为标准,采用与理想溶液相似的优先排序技术(TOPSIS)对剩余测试截面进行排序。TOPSIS算法表明,VIV钻石和圆形收割机分别保持在能源性能的第二和第三位。菱形截面和圆形截面的偏好值几乎相当,但不到配置2的一半。在一般情况下,锋利的边缘圆柱体显示优于圆形横截面的能量性能。而轴对称圆柱由于其全向性能,在流动方向变化的地方效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FIV Energy Harvesting From Sharp-Edge Oscillators On Design and Analysis of a Drivetrain Test Rig for Wind Turbine Health Monitoring The Influence of Tidal Unsteadiness on a Tidal Turbine Blade Flow-Induced Vibration Learning a Predictionless Resonating Controller for Wave Energy Converters Performance of a Passive Tuned Liquid Column Damper for Floating Wind Turbines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1