Learning a Predictionless Resonating Controller for Wave Energy Converters

S. Shi, R. Patton, Mustafa Abdelrahman, Yanhua Liu
{"title":"Learning a Predictionless Resonating Controller for Wave Energy Converters","authors":"S. Shi, R. Patton, Mustafa Abdelrahman, Yanhua Liu","doi":"10.1115/omae2019-95619","DOIUrl":null,"url":null,"abstract":"\n This article presents a data-efficient learning approach for the complex-conjugate control of a wave energy point absorber. Particularly, the Bayesian Optimization algorithm is adopted for maximizing the extracted energy from sea waves subject to physical constraints. The algorithm learns the optimal coefficients of the causal controller. The simulation model of a Wavestar Wave Energy Converter (WEC) is selected to validate the control strategy for both the regular and irregular waves. The results indicate the efficiency and feasibility of the proposed control system. Less than 20 function evaluations are required to converge towards the optimal performance of each sea state. Additionally, this model-free controller can adapt to variations in the real sea state and be insensitive and robust to the WEC modeling bias.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This article presents a data-efficient learning approach for the complex-conjugate control of a wave energy point absorber. Particularly, the Bayesian Optimization algorithm is adopted for maximizing the extracted energy from sea waves subject to physical constraints. The algorithm learns the optimal coefficients of the causal controller. The simulation model of a Wavestar Wave Energy Converter (WEC) is selected to validate the control strategy for both the regular and irregular waves. The results indicate the efficiency and feasibility of the proposed control system. Less than 20 function evaluations are required to converge towards the optimal performance of each sea state. Additionally, this model-free controller can adapt to variations in the real sea state and be insensitive and robust to the WEC modeling bias.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
波浪能变换器的无预测谐振控制器学习
本文提出了一种波能点吸收器复共轭控制的数据高效学习方法。其中,在受物理约束的情况下,采用贝叶斯优化算法最大限度地从海浪中提取能量。该算法学习因果控制器的最优系数。选择Wavestar波浪能量转换器(WEC)的仿真模型,对规则波和不规则波的控制策略进行了验证。结果表明了所提出的控制系统的有效性和可行性。需要少于20个函数评估才能收敛于每个海况的最佳性能。此外,该无模型控制器可以适应实际海况的变化,并且对WEC建模偏差不敏感且具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FIV Energy Harvesting From Sharp-Edge Oscillators On Design and Analysis of a Drivetrain Test Rig for Wind Turbine Health Monitoring The Influence of Tidal Unsteadiness on a Tidal Turbine Blade Flow-Induced Vibration Learning a Predictionless Resonating Controller for Wave Energy Converters Performance of a Passive Tuned Liquid Column Damper for Floating Wind Turbines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1