A Differential Low-Power Voltage-Clamped ISFET Topology for Biomedical Applications

Shaghayegh Aslanzadeh, A. Hedayatipour, Mst Shamim Ara Shawkat, N. Mcfarlane
{"title":"A Differential Low-Power Voltage-Clamped ISFET Topology for Biomedical Applications","authors":"Shaghayegh Aslanzadeh, A. Hedayatipour, Mst Shamim Ara Shawkat, N. Mcfarlane","doi":"10.1109/DCAS.2018.8620183","DOIUrl":null,"url":null,"abstract":"Over the past few years, ion-sensitive field-effect transistors (ISFETs) have played a major role in chemical detection systems. This paper presents an architecture for an ultra-low power CMOS pH sensor suitable for biomedical applications. The design uses a differential ISFET readout circuit operating at 0.9V power supply. The minimum supply voltage and minimum power consumption are achieved by operating the MOSFETs in subthreshold regions. The novelty of this design lies in using different size sensing gate areas in a differential voltage clamping ISFET topology. The ISFET model is derived from experimental measurements. Simulation results of the circuit in a 0.5µm standard CMOS process show that the designed differential ISFET provides an average sensitivity −49mV/pH with ISFET sensing areas of 80µm×80µm and 10µm×10µm over a 1-14pH range with 2.3nW of power.","PeriodicalId":320317,"journal":{"name":"2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCAS.2018.8620183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Over the past few years, ion-sensitive field-effect transistors (ISFETs) have played a major role in chemical detection systems. This paper presents an architecture for an ultra-low power CMOS pH sensor suitable for biomedical applications. The design uses a differential ISFET readout circuit operating at 0.9V power supply. The minimum supply voltage and minimum power consumption are achieved by operating the MOSFETs in subthreshold regions. The novelty of this design lies in using different size sensing gate areas in a differential voltage clamping ISFET topology. The ISFET model is derived from experimental measurements. Simulation results of the circuit in a 0.5µm standard CMOS process show that the designed differential ISFET provides an average sensitivity −49mV/pH with ISFET sensing areas of 80µm×80µm and 10µm×10µm over a 1-14pH range with 2.3nW of power.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物医学应用的差分低功率电压箝位ISFET拓扑
在过去的几年中,离子敏感场效应晶体管(isfet)在化学检测系统中发挥了重要作用。本文提出了一种适用于生物医学应用的超低功耗CMOS pH传感器架构。该设计采用差分ISFET读出电路,工作在0.9V电源下。通过在亚阈值区域操作mosfet,可以实现最小的电源电压和最小的功耗。该设计的新颖之处在于在差分电压箝位ISFET拓扑中使用不同尺寸的传感栅极区域。ISFET模型是由实验测量得出的。在0.5 μ m标准CMOS工艺下的仿真结果表明,所设计的差分ISFET在1-14pH范围内的平均灵敏度为- 49mV/pH,检测面积为80µm×80µm和10µm×10µm,功率为2.3nW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Differential Low-Power Voltage-Clamped ISFET Topology for Biomedical Applications Memory Optimization Techniques for FPGA based CNN Implementations Dual-Path Component Based Digital Receiver Linearization With a Very Non-linear Auxiliary Path Biomimetic, Soft-Material Synapse for Neuromorphic Computing: from Device to Network A Broadband Spectrum Channelizer with PWM-LO Based Sub-Band Equalization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1