Unsupervised and Ensemble-based Anomaly Detection Method for Network Security

Donghun Yang, Myunggwon Hwang
{"title":"Unsupervised and Ensemble-based Anomaly Detection Method for Network Security","authors":"Donghun Yang, Myunggwon Hwang","doi":"10.1109/KST53302.2022.9729061","DOIUrl":null,"url":null,"abstract":"Bigdata and IoT technologies are developing rapidly. Accordingly, consideration of network security is also emphasized, and efficient intrusion detection technology is required for detecting increasingly sophisticated network attacks. In this study, we propose an efficient network anomaly detection method based on ensemble and unsupervised learning. The proposed model is built by training an autoencoder, a representative unsupervised deep learning model, using only normal network traffic data. The anomaly score of the detection target data is derived by ensemble the reconstruction loss and the Mahalanobis distances for each layer output of the trained autoencoder. By applying a threshold to this score, network anomaly traffic can be efficiently detected. To evaluate the proposed model, we applied our method to UNSW-NB15 dataset. The results show that the overall performance of the proposed method is superior to those of the model using only the reconstruction loss of the autoencoder and the model applying the Mahalanobis distance to the raw data.","PeriodicalId":433638,"journal":{"name":"2022 14th International Conference on Knowledge and Smart Technology (KST)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Knowledge and Smart Technology (KST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KST53302.2022.9729061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Bigdata and IoT technologies are developing rapidly. Accordingly, consideration of network security is also emphasized, and efficient intrusion detection technology is required for detecting increasingly sophisticated network attacks. In this study, we propose an efficient network anomaly detection method based on ensemble and unsupervised learning. The proposed model is built by training an autoencoder, a representative unsupervised deep learning model, using only normal network traffic data. The anomaly score of the detection target data is derived by ensemble the reconstruction loss and the Mahalanobis distances for each layer output of the trained autoencoder. By applying a threshold to this score, network anomaly traffic can be efficiently detected. To evaluate the proposed model, we applied our method to UNSW-NB15 dataset. The results show that the overall performance of the proposed method is superior to those of the model using only the reconstruction loss of the autoencoder and the model applying the Mahalanobis distance to the raw data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于集成的无监督网络安全异常检测方法
大数据、物联网技术快速发展。因此,对网络安全的考虑也日益受到重视,需要高效的入侵检测技术来检测日益复杂的网络攻击。在本研究中,我们提出了一种基于集成和无监督学习的高效网络异常检测方法。该模型是通过训练一个自编码器(一种代表性的无监督深度学习模型)来构建的,该模型仅使用正常的网络流量数据。将训练好的自编码器每层输出的重建损失和马氏距离综合起来,得到检测目标数据的异常分数。通过对该分数应用阈值,可以有效地检测网络异常流量。为了评估所提出的模型,我们将该方法应用于UNSW-NB15数据集。结果表明,该方法的总体性能优于只考虑自编码器重构损失的模型和对原始数据应用马氏距离的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised and Ensemble-based Anomaly Detection Method for Network Security Unsupervised concept identification from a large corpus of research documents GSAP: A Hybrid GRU and Self-Attention Based Model for Dual Medical NLP Tasks Beyond fear go viral: A machine learning study on infodemic detection during covid-19 pandemic Blockchain for Transport (BC4 T), Performance Simulations of Blockchain Network for Emission Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1