Unsupervised concept identification from a large corpus of research documents

Watcharachat Plangsri, Nalina Phisanbut, P. Piamsa-nga
{"title":"Unsupervised concept identification from a large corpus of research documents","authors":"Watcharachat Plangsri, Nalina Phisanbut, P. Piamsa-nga","doi":"10.1109/KST53302.2022.9729060","DOIUrl":null,"url":null,"abstract":"Research documents play a crucial role in data-driven research. Identifying concepts in a corpus of research documents can lead to a better understanding of the current stage of research. It can reveal fruitful concepts hidden inside the corpus. However, manually analyzing the corpus is laborious and inefficient. Automating the process is challenging due to the lack of background knowledge to fill the semantic gap that exists between humans and machines. To address this issue, we introduce a novel method that leverages information from an online open resource, namely Wikipedia, to build background knowledge automatically. An experiment on a set of 13,636 research documents shows that the framework can effectively and efficiently identify broad range of concepts within a large text corpus by exploiting only Wikipedia categories and documents' titles.","PeriodicalId":433638,"journal":{"name":"2022 14th International Conference on Knowledge and Smart Technology (KST)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Knowledge and Smart Technology (KST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KST53302.2022.9729060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Research documents play a crucial role in data-driven research. Identifying concepts in a corpus of research documents can lead to a better understanding of the current stage of research. It can reveal fruitful concepts hidden inside the corpus. However, manually analyzing the corpus is laborious and inefficient. Automating the process is challenging due to the lack of background knowledge to fill the semantic gap that exists between humans and machines. To address this issue, we introduce a novel method that leverages information from an online open resource, namely Wikipedia, to build background knowledge automatically. An experiment on a set of 13,636 research documents shows that the framework can effectively and efficiently identify broad range of concepts within a large text corpus by exploiting only Wikipedia categories and documents' titles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从大量研究文献的语料库中进行无监督概念识别
研究文件在数据驱动的研究中起着至关重要的作用。识别研究文件语料库中的概念可以更好地理解当前的研究阶段。它可以揭示隐藏在语料库中的富有成果的概念。然而,手工分析语料库是费力和低效的。由于缺乏背景知识来填补人与机器之间存在的语义差距,因此自动化过程具有挑战性。为了解决这个问题,我们引入了一种利用在线开放资源(即维基百科)的信息自动构建背景知识的新方法。一组13,636个研究文档的实验表明,该框架可以通过仅利用维基百科的分类和文档标题,有效地识别大型文本语料库中的广泛概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised and Ensemble-based Anomaly Detection Method for Network Security Unsupervised concept identification from a large corpus of research documents GSAP: A Hybrid GRU and Self-Attention Based Model for Dual Medical NLP Tasks Beyond fear go viral: A machine learning study on infodemic detection during covid-19 pandemic Blockchain for Transport (BC4 T), Performance Simulations of Blockchain Network for Emission Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1