Simplified time-domain simulation of detailed long-term dynamic models

D. Fabozzi, T. Van Cutsem
{"title":"Simplified time-domain simulation of detailed long-term dynamic models","authors":"D. Fabozzi, T. Van Cutsem","doi":"10.1109/PES.2009.5275463","DOIUrl":null,"url":null,"abstract":"Time-domain simulation of power system long-term dynamics involves the solution of large sparse systems of nonlinear stiff differential-algebraic equations. Simulation tools have traditionally focused on the accuracy of the solution and, in spite of many algorithmic improvements, time simulations still require a significant computational effort. In some applications, however, it is sufficient to have an approximate system response of the detailed model. The paper revisits the merits of the Backward Euler method and proposes a strategy to control its step size, with the objective of filtering out fast stable oscillations and focusing on the aperiodic behaviour of the system. The proposed method is compared to detailed simulation as well as to the quasi-steady-state approximation. Illustrative examples are given on a small but representative system, subject to long-term voltage instability.","PeriodicalId":258632,"journal":{"name":"2009 IEEE Power & Energy Society General Meeting","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Power & Energy Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PES.2009.5275463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Time-domain simulation of power system long-term dynamics involves the solution of large sparse systems of nonlinear stiff differential-algebraic equations. Simulation tools have traditionally focused on the accuracy of the solution and, in spite of many algorithmic improvements, time simulations still require a significant computational effort. In some applications, however, it is sufficient to have an approximate system response of the detailed model. The paper revisits the merits of the Backward Euler method and proposes a strategy to control its step size, with the objective of filtering out fast stable oscillations and focusing on the aperiodic behaviour of the system. The proposed method is compared to detailed simulation as well as to the quasi-steady-state approximation. Illustrative examples are given on a small but representative system, subject to long-term voltage instability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
详细的长期动态模型的简化时域仿真
电力系统长期动力学的时域仿真涉及求解大型非线性刚性微分代数方程组的稀疏系统。仿真工具传统上专注于解决方案的准确性,尽管有许多算法改进,但时间模拟仍然需要大量的计算工作。然而,在某些应用中,有一个详细模型的近似系统响应就足够了。本文回顾了后向欧拉方法的优点,并提出了一种控制其步长的策略,目的是滤除快速稳定振荡并关注系统的非周期行为。将该方法与详细仿真和准稳态近似进行了比较。给出了一个小型但具有代表性的系统的实例,该系统受到长期电压不稳定的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Substation fault analysis requirements On field experience results related to high-impedance faults in power distribution system Reactive power compensation using Z-source based photovoltaic system How can flicker level be determined before a customer is connected to the electric grid Transmission expansion and pricing in Colombia: An appraisal of current practices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1